Public Bike Management(dfs+dijikstra)

Public Bike Management

题目

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.

When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.

The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S​3​​ , we have 2 different shortest paths:PBMC -> S​1​​ -> S​3​​ . In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S​1​​ and then take 5 bikes to S​3​​ , so that both stations will be in perfect conditions.PBMC -> S​2​​ -> S​3​​ . This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

在这里插入图片描述

Input Specification:
Each input file contains one test case. For each case, the first line contains 4 numbers: C​max​​ (≤100), always an even number, is the maximumcapacity of each station; N (≤500), the total number of stations; S​p​​ , the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers C​i​​ (i=1,⋯,N) where each C​i​​ is the current number of bikes at S​i​​ respectively. Then M lines follow, each contains 3 numbers: S​i​​ , S​j​​ , and T​ij​​ which describe the time T​ij​​ taken to move betwen stations S​i​​ and S​j​​ . All the numbers in a line are separated by a space.

Output Specification:
For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0−>S​1​​ −>⋯−>S​p . Finally after another space, output the number of bikes that we must take back to PBMC after the condition of S​p​​ is adjusted to perfect.

Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge’s data guarantee that such a path is unique.

Sample Input:

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1

Sample Output:

3 0->2->3 0

答案

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
int map[520][520],dis[520],vis[520],init[520];
vector<int> pre[520],path,tmp_path;
int cmax,n,sp,m;
int min_need=inf,min_back=inf;

void dfs(int root)
{
	tmp_path.push_back(root);
	if(root==0)
	{
		int need=0,back=0;
		for(int i=tmp_path.size()-1;i>=0;i--)
		{
			int id=tmp_path[i];
			if(init[id]>0)
			back+=init[id];
			else
			{
				if(back>=-1*init[id])
				back+=init[id];
				else
				{
					need+=-1*init[id]-back;
					back=0;
				}
			}
		}
		if(need<min_need)
		{
			min_need=need;
			min_back=back;
			path=tmp_path;
		}
		else if(need==min_need&&back<min_back)
		{
			min_back=back;
			path=tmp_path;
		}
		tmp_path.pop_back();
		return ;
	}
	for(int i=0;i<pre[root].size();i++)
		dfs(pre[root][i]);
	tmp_path.pop_back();
}

int main()
{
	cin>>cmax>>n>>sp>>m;
	fill(map[0],map[0]+520*520,inf);
	fill(dis,dis+520,inf);
	fill(vis,vis+520,0);
	for(int i=1;i<=n;i++)
	{
		cin>>init[i];
		init[i]-=cmax/2;
	}
	for(int i=0;i<m;i++)
	{
		int x,y;
		cin>>x>>y;
		cin>>map[x][y];
		map[y][x]=map[x][y];
	}
	dis[0]=0;
	for(int t=0;t<=n;t++)
	{
		int min=inf,pos=-1;
		for(int i=0;i<=n;i++)
		{
			if(!vis[i]&&dis[i]<min)
			{
				min=dis[i];
				pos=i;
			}
		}
		if(pos==-1) break;
		vis[pos]=1;
		for(int i=0;i<=n;i++)
		{
			if(!vis[i]&&dis[pos]+map[pos][i]<dis[i])
			{
				dis[i]=dis[pos]+map[pos][i];
				pre[i].clear();
				pre[i].push_back(pos);
			}
			else if(!vis[i]&&dis[pos]+map[pos][i]==dis[i])
			{
				pre[i].push_back(pos);
			}
		}
	}
	dfs(sp);
	cout<<min_need<<" "<<0;
	for(int i=path.size()-2;i>=0;i--)
		cout<<"->"<<path[i];
	cout<<" "<<min_back;
}

参考

Public Bike Management (30)-PAT甲级真题(Dijkstra + DFS)

注意

本题在选取路线是有三个判断优先级,路径最短优先级最高,派送中心派出的数量最少优先级其次,回收的数量最少优先级最低(但不能忽略,否则有几个测试点过不了)

还有就是后面的节点不能把自己多出来的自行车分配给上一个节点,而是只能分配给下一个节点或者将其回收

细节上,因为PBMC序号为0,其它节点的序号从1开始,所以在dijikstra遍历时判断条件要为i<=n;另外从tmp_path中取出的是节点的下标,还要再去init数组中拿出相应的值

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值