最佳调度问题(回溯法)

最佳调度问题

题目

假设有n(n<=20)个任务由k(k<=20)个可并行工作的机器完成。完成任务i需要的时间为ti。 试设计一个算法,对任意给定的整数n和k,以及完成任务i 需要的时间为ti ,i=1~n。计算完成这n个任务的最佳调度,使得完成全部任务的时间最早。

输入格式:
输入数据的第一行有2 个正整数n和k。第2 行的n个正整数是完成n个任务需要的时间。

输出格式:
将计算出的完成全部任务的最早时间输出到屏幕。

输入样例:
在这里给出一组输入。例如:

7 3
2 14 4 16 6 5 3

输出样例:
在这里给出相应的输出。例如:

17

答案

#include<iostream>
#include<algorithm>
using namespace std;
int n,k,t[99],ans[99],min_time=0x3f3f3f3f;
void dfs(int level)
{
	if(level==n)
	{
		int tmp=*max_element(ans,ans+n);
		if(tmp<min_time) min_time=tmp;
		return;
	}
	for(int i=0;i<k;i++)
	{
		ans[i]+=t[level];
		if(ans[i]<min_time) dfs(level+1);
		ans[i]-=t[level];
	}
}
int main()
{
	cin>>n>>k;
	fill(ans,ans+99,0);
	for(int i=0;i<n;i++)
	cin>>t[i];
	dfs(0);
	cout<<min_time<<endl;
}

参考

算法-回溯法解决最佳调度问题

这篇文章中有思路讲解,大家可以去看一下,我对于代码做了一定的优化

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值