深度学习
文章平均质量分 92
BurtonMan
喜欢研究历史,为了避免把历史当作故事来读,在慢慢整理历史文献,来梳理历史脉络,其内容均摘专业文献,非个人原创研究。
这里主要是研究技术,历史主要在知乎,即
https://www.zhihu.com/people/man-burton
公众号:real的观点
展开
-
Frustratingly simple few-shot object detection
概述这篇文章比较简单,仅对稀有类现有检测器的最后一层进行微调对于小样本目标检测任务至关重要。在目前的基准测试中,这种简单的方法比元学习方法提高了大约2~20个点,有时甚至是以前方法的两倍精度。这里先介绍下基本概念小样本学习:1)标准小样本:给定一个大规模的训练集作为基类(base class),可以类比于人类的知识积累,对于从未见过的新类(novel class,与基类不重叠),借助每类少数几个训练样本,需要准确识别新类的测试样本。2)广义小样本:相比与小样本学习,广义小样本学习中测试样本原创 2021-04-12 23:58:32 · 1765 阅读 · 0 评论 -
Towards Open World Object Detection
1原创 2021-04-05 17:36:36 · 801 阅读 · 2 评论 -
RepPoints: Point Set Representation for Object Detection解读
摘要现代的检测器很依赖矩形框bbox,比如anchors,proposals和final predictions,呈现在不同的识别阶段里。bbox虽然很方便,但它只能提供粗糙的目标定位和特征提取。注:final predictions如何理解呢,在引言里说了from anchors and proposals to final predictions,就很明白了,它的意思是最终的输出结果。为什么bbox只是提供粗糙的目标定位和特征提取呢?文章的后面简单的说明了,bbox只是提取了4个边界点,并原创 2020-06-13 13:22:00 · 1637 阅读 · 5 评论 -
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields解读
摘要我们的方法,能够有效的检测一个图像中的多人。通过Part Affinity Fields来学习身体的各部分及关联性,利用全局纹理信息,自下而上的方法,达到实时性和高精度。通过两个分支来学习到部位的位置和关联性。引言一张图中的多人pose的难点:1.不知道一幅图有多少人,他们会存在不同的位置和不同的scale。2.人与人之间存在接触、遮挡、切断等复杂的空间干扰。3.多人时,会存在时间复杂度的问题注:提到多人Pose的难点,这些是很多问题,都存在的问题。检测也是相同的问题...原创 2020-05-24 08:09:40 · 735 阅读 · 0 评论 -
CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection解读
摘要基于关键点的检测器得到了不错的性能,但关键点匹配错误是普遍性存在的,严重的影响了其检测器的性能。作者通过centripetal shif将相同的类别的实例分开。CentripetalNet是预测角点的位置和向心偏移,通过向向心偏移来对齐角点的匹配。注:这里说明,基于关键点检测器的难点是针对相同类别的实例。而这个分析来源于在公开数据集中,跑前面论文的模型,分析出的bad case。为了提点,针对普遍存在的问题,进行优化。corner pooling通过提取bbox的边缘信息,这里为了更原创 2020-05-24 08:10:03 · 1148 阅读 · 0 评论