自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 阵列位置度的最佳拟合

今天跟朋友聊天,对于孔阵列的位置度问题。孔阵列不全基准,看基准约束的自由度。理论基础见下,聊着聊着也就勾起我想写出来的欲望。对比CALYPSO,相差结果也是满意的。

2024-10-18 21:40:56 338

原创 三坐标测量中的最小二乘法和切比雪夫法理论与实践应用

这里圆的拟合涉及到的是最小化的问题,对于最小二乘圆,所求的就是残差的平方和最小。在产品几何量领域中,从两点测量到多点测量,特别三坐标测量机扫描技术不断的进步,蔡司VAST GOLD,VAST XT主动扫描探头在恒测力情况下出色的扫描性能,在探头内部自动调节测力,使探针弯曲参数在任意曲率表面都能表现出一致,从而可以产生超高速的测量体验,也为我们复现工件的原貌提供了更多准确的点,使我们的计算不再基于元素的最少点数。'L-BFGS-B'(有约束的拟牛顿法):基于 BFGS 的优化方法,适用于带有边界约束的问题。

2024-10-09 22:05:15 1323

原创 GRBL AutoLevel 对于平面调整补偿的一些小理解

高精度平面测量

2024-09-11 21:56:48 518

原创 从复数到欧拉公式

复数的由来和欧拉公式

2024-08-17 22:59:05 1129

原创 论图像边界点的提取

但是这里我们返归事物的本源通过提取灰度边界上的点来拟合我们想要的元素,对于点的提取,基本思想是找寻一幅图相中灰度强度变化最强的位置。对于变化率而言就是取灰度的的一阶和二阶导数,也可以称为灰度梯度, 利用图像的灰度值最强梯度方向确定工件边缘上的单点的位置。在质量控制的检测世界里,检测手段多种多样,除了传统的接触式检测,还有一些非接触式检测方法,比如使用工业相机,激光三角,白光共聚焦、光干涉、 TOF 灯传感器检测。:Sobel 算子是一种常用的梯度算子,它可以计算图像在水平和垂直方向上的梯度。

2024-07-12 22:41:31 1386

原创 更稳定更优秀的坐标测量机

在质量为王的年代,扫描技术洞察分毫,为质量提供了更为全面的保证,由于扫描是“即时”进行的,测量过程中机器的所有元件都在运动,因此它将很快超越基于软件的补偿系统的能力,这也促进了新的补偿方法的研究,比如D-CAA,就是针对这种动态误差而提出的补偿。更坚固的机器,当然要选用更坚固的材料,刚度是坐标测量机设计中的第二个主要目标,刚度与重量比高的材料往往能最大限度地减少坐标测量机设计中固有的许多机械误差。这是一项艰巨的任务。与刚度更大的材料一样,刚度更大的轴承带来的更大加速度也意味着更短的周期和更低的测量成本。

2024-06-27 22:03:30 1162 1

原创 摆线轮基础

在推到摆线轮方程之前,我们先说说具有收缩摆线的摆线轮。直接用滚圆摆线轮具有相对较高的偏心率,导致高速下产生巨大的不平衡力,并导致不平稳的运行。绘制点不再放置在滚动圆的周长上(距离 R),而是位于滚动圆内部(距离 r < R)。相比之下,如果绘制点放置在滚动圆外部(距离 r >R),则得到扩展的摆线。Cycloid”一词,及其形容词“Cycloidal”,源自“Hypocycloid”这一词汇,它描述了一个小圆的圆周上的一个点在一个较大的固定圆周上旋转所形成的曲线。相对于圆上的点的调整,在。

2023-11-01 21:35:02 955 1

原创 Cp Cpk Cg Cgk 1.33,1.67的由来

在定义制造过程时,目标是确保生产的零件符合规格上限和下限(USL,LSL)。所以设计出过程能力这个概念,过程能力是衡量制造过程能够在规范范围内生产零件的一致性的参数。的时候合格率可以达到99.9999998%,而合格率想达到99.73%那么的公差宽度就得等于。简单的只从Cp出发,假设平均值和名义中心重合,公差是。而合格率想达到99.9936%公差宽度得等于。Cpk是零件变异和中心指数要小于公差宽度。那么这些参数怎么来的呢?

2023-05-10 23:47:27 19536 1

原创 python pyinstaller 打包的exe程序 反编译源码

安装 uncompyle6 (pip install uncompyle6)在文件夹下找到程序的主文件和struct文件,把它们的后缀改成".pyc"这时候在文件夹下讲生成一个exe程序名加_extracted的文件夹。用struct.pyc, E3前的字符插入到程序主文件里面的E3之前。执行 这个 python 程序把要破解的exe程序名字放在后面。输入uncompyle6 加要破解的pyc的程序路径。下载wxMEdit把这两个文件拖入wxMEdit。这样就可以看到原始程序了。

2023-02-23 16:02:10 734

原创 计算坐标系的欧拉角

在几何测量里,坐标系作为测量基础,是重点关注对象。不同的坐标系会导致不同的测量的数值。最近学到了"pitch,Roll,Yaw"几个专业术语,简单来说就是坐标系的绕轴旋转。在CALYPSO中建立两个坐标系“base”和“Alignment4”还是一样通过PCM把坐标系差异写出。计算上面的角度就可以了。

2023-02-21 00:40:56 742

原创 通过PCM去理解坐标系及Python实现

坐标变换实际上是通过矩阵乘法实现的

2022-12-22 00:41:51 348

原创 矩阵消元法

消元法(elimination)也是计算机程序解方程的方法,消元法如果奏效了,方程就解出来了。

2022-12-05 06:55:52 4457

原创 线性代数的正确引入

线性代数的引入

2022-11-29 22:21:01 324

原创 坐标变换即基底矩阵变换

坐标变换即基底矩阵变换

2022-11-27 20:01:32 1379

翻译 找到相应3D点之间的最佳拟合

数据的拟合

2022-11-26 15:09:51 897

翻译 表面纹理分析中的样条滤波器

样条滤波器在表面纹理分析中的应用

2022-11-24 19:18:35 1244 1

原创 CT 成像原理

经过计算机运算(傅立叶转换、反投影法等)可以解出这一联立方程,从而求出每个体素的X线吸收系数或衰减系数,将其排列成数字矩阵(digital matrix),数字矩阵经过数字/模拟转换器(D/A)把数字矩阵中的每个数字转变为由黑到白不同灰度的小方块,即像素(pixel),也按矩阵排列,即构成了CT图像。那么当我们遇到复杂的结构时,我们就把工件看成一个个体素(voxel)构成的整体。X射线在穿过不同的物质时,会有不同的衰减速率。为入射的X射线强度, 为出射的X射线强度, 为X射线穿过该物质的长度。

2022-10-10 20:55:49 1307

原创 HALCON day1 C# 打开相机

Halcon C# 相机

2022-09-20 12:12:30 2008 2

原创 圆的FFT分析的算法

和这个标准圆的半径上的差值就形成了上面的小圆,所以每个小圆的所引入的频率的叠加,就构成了最终的圆度波形。

2022-09-06 13:56:55 2578

原创 对于转台的转动惯量的一点思考

刚体定轴转动中的转动惯量,其地位相当于刚体平动中的质量,是衡量刚体抵抗旋转运动的惯性的物理量。或者理解为质量的转动形式。其量值取决于物体的形状、质量分布及转轴的位置。1. 刚体平动质量2. 刚体转动转动惯量你用同样的力在两个不同的物体上作用,质量重的那个物体速度变化慢。同样你用相同的力矩(注意让物体平动的叫做力,让物体转动的叫做力矩)作用在一个物体上想让他转动,不同的物体角速度变化的快慢也是不一样的,影响角速度变化快慢的这个因素就是转动惯量。按照生活经验来看形状大小体积相同的

2022-02-15 23:38:07 1634 1

原创 中心极限定理,统计学的傅里叶变换

人们在长期实践中认识到频率具有稳定性,即当实验次数不断增加时,频率稳定在一个数附近,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率的客观存在,进而由频率的性质的启发和抽象给出了概率的定义,因而频率的稳定性是概率客观存在的基础,伯努利大数定理则以严密的数学形式论证了频率的稳定性。在谈论伯努利大数定理之前,我们先看一下大数定理。大数定律随机事件A的频率当重复试验的次数增大时,总是呈现出稳定性,稳定在某一个常数附近。频率的稳定性是概率定义的客观基础。伯努利大数定理设是

2021-12-08 14:28:49 1224

原创 样本标准差分母为什么是n-1

当我们对数据总体进行统计时,由于每一个数据都被使用到,所以计算得到的标准差和方差是能够准确体现整个数据集特征的。而当从总体中提取出某个样本时,该样本当中的数据在一定程度上会集中在某个范围之中,由此计算出来的标准差和方差不能准确体现出数据总体的情况,通常来说得到的结果会比总体的要小。举一个例子,如果一个数据集满足高斯分布(Normal Distribution),那当我们提取样本的时候,数据基本上会集中在中间的部分,而边缘值的数目可能会比较少,所以最后得到的样本方差和样本标准差会比总体要小。为了修正这

2021-11-25 13:16:13 10737

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除