Cp Cpk Cg Cgk 1.33,1.67的由来

过程能力(Cp与Cpk)是衡量制造过程在规格限制内生产一致性的关键参数。Cp基于公差宽度与过程变异性,而Cpk考虑了过程中心位置。例如,Cp=1.0表示过程变异在公差范围内,而Cpk=0.7说明过程虽稳定但未完全居中。正态分布用于描述这些变异。通过计算不同σ范围内的概率,可以确定合格率,如99.73%对应3σ公差,99.9999998%对应6σ。Cg和Cgk是类似的概念,用于评估过程性能。
摘要由CSDN通过智能技术生成

image

在定义制造过程时,目标是确保生产的零件符合规格上限和下限(USL,LSL)。所以设计出过程能力这个概念,过程能力是衡量制造过程能够在规范范围内生产零件的一致性的参数。
基本想法很简单,让制造过程:

  1. 以设计工程师要求的标称值为中心
  2. 变异性的规格宽度窄。
    Cp是零件变异是否小于公差宽度
    在这里插入图片描述

Cpk是零件变异和中心指数要小于公差宽度
在这里插入图片描述

以汽车过门作为零件变异的举例:
在这里插入图片描述

Cp=0.7 Cpk=0.7Cp=1.0 Cpk=1.0Cp=2.0 Cpk=0.7Cp=2.0 Cpk=2.0
驾驶员是不稳定的。汽车经常刮伤墙壁。会生产有缺陷的零件除非过程变异宽度减少且过程是居中的。驾驶员还是不稳定但与以前相比好一点。也经常会靠近墙壁。很可能有缺陷,除非变异宽度减少。驾驶员无法使汽车居中。但是他始终如一-总是离得一侧太近。是可能有缺陷,除非过程是重新居中的。驾驶员总能成功通过。过程是居中,并且分布狭窄。不太可能有缺陷即使过程发生了变化稍微向两侧倾斜。

表格来源:

image

那么这些参数怎么来的呢?首先

C p = U S L − L S L 6 σ Cp = \frac{USL-LSL}{6\sigma} Cp=6σUSLLSL

C p k = { U S L − X ‾ 3 σ ; X ‾ − L S L 3 σ } Cpk = \{\frac{USL-\overline{X}}{3\sigma};\frac{\overline{X}-LSL}{3\sigma}\} Cpk={3σUSLX;3σXLSL}

设如果随机变量的 X X X的概率密度为

p ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} p(x)=2π σ1e2σ2(xμ)2

则称变量 X X X服从参数为 μ \mu μ , σ 2 \sigma^2 σ2的正态分布。记作 X ∽ N ( μ , σ 2 ) X \backsim N(\mu,\sigma^2) XN(μ,σ2)
计算 μ = 0 \mu=0 μ=0 , σ 2 = 1 \sigma^2=1 σ2=1的正态分布函数

# -*- coding: utf-8 -*-
"""
 Python program for plot Gauss function
"""
import numpy as np
import math
import matplotlib.pyplot as plt
from scipy import integrate
def gd(x, mu=0, sigma=1):
    # Gauss Disbutrion
    left = 1 / (np.sqrt(2 * math.pi) * np.sqrt(sigma))
    right = np.exp(-(x - mu)**2 / (2 * sigma))
    return left * right


if __name__ == '__main__':
    x = np.arange(-7, 7, 0.1)
    y_1 = gd(x, 0, 0.2)
    y_2 = gd(x, 0, 1.0)
    y_3 = gd(x, 0, 5.0)
    y_4 = gd(x, -2, 0.5)

    #  plot
    plt.plot(x, y_2, color='blue')

    #  set coordinate
    plt.xlim(-7.0, 7.0)
    plt.ylim(-0.2, 1)


    plt.legend(labels=['$\mu = 0, \sigma^2=1.0$'])
    sigma_1 = integrate.quad(gd,-1,1)
    sigma_1_percent = "%.3f%%" % (sigma_1[0] * 100)
    sigma_2 = integrate.quad(gd,-2,2)
    sigma_2_percent = "%.3f%%" % (sigma_2[0] * 100)
    sigma_3 = integrate.quad(gd,-3,3)
    sigma_3_percent = "%.3f%%" % (sigma_3[0] * 100)
    sigma_6 = integrate.quad(gd,-6,6)
    sigma_6_percent = "%.20f%%" % (sigma_6[0] * 100)
            # plot 1 time sigma 
    plt.plot([1,1],[0,gd(1,0,1)])
    plt.plot([-1,-1],[0,gd(-1,0,1)])
    plt.text(-1,0.2,sigma_1_percent,fontsize=15)
            # plot 2 time sigma
    plt.plot([2,2],[0,gd(2,0,1)])
    plt.plot([-2,-2],[0,gd(-2,0,1)])
    plt.text(-2,0.05,sigma_2_percent,fontsize=15)
            # plot 6 time sigma
    plt.plot([6,6],[-1,gd(6,0,1)])
    plt.plot([-6,-6],[-1,gd(-6,0,1)])
    plt.text(-6,-0.1,sigma_6_percent,fontsize=15)           
    plt.show()

∫ − 1 1 f ( x ) d x = 0.68269 \int_{-1}^{1} f(x)dx = 0.68269 11f(x)dx=0.68269

∫ − 2 2 f ( x ) d x = 0.95450 \int_{-2}^{2} f(x)dx = 0.95450 22f(x)dx=0.95450

∫ − 3 3 f ( x ) d x = 0.99730 \int_{-3}^{3} f(x)dx = 0.99730 33f(x)dx=0.99730

∫ − 6 6 f ( x ) d x = 0.9999999980 \int_{-6}^{6} f(x)dx = 0.9999999980 66f(x)dx=0.9999999980

image

简单的只从Cp出发,假设平均值和名义中心重合,公差是 + / − 6 σ +/-6\sigma +/6σ的时候合格率可以达到99.9999998%,而合格率想达到99.73%那么的公差宽度就得等于 + / − 3 σ +/-3\sigma +/3σ
C p = 6 σ 6 σ = 1 Cp = \frac{6\sigma}{6\sigma} =1 Cp=6σ6σ=1
而合格率想达到99.9936%公差宽度得等于 + / − 4 σ +/-4\sigma +/4σ

C p = 8 σ 6 σ = 1.33 Cp = \frac{8\sigma}{6\sigma} =1.33 Cp=6σ8σ=1.33

而Cg,Cgk有异曲同工之妙:
C g = 0.2 T 6 σ C_g = \frac{0.2T}{6\sigma} Cg=6σ0.2T

在这里插入图片描述

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值