前言
👧个人主页:@小沈YO.
😚小编介绍:欢迎来到我的乱七八糟小星球🌝
📋专栏:递归、回溯及搜索
🔑本章内容:递归
记得 评论📝 +点赞👍 +收藏😽 +关注💞哦~
一、递归简介:
- 在解决⼀个规模为n的问题时,如果满⾜以下条件,我们可以使⽤递归来解决:
a. 问题可以被划分为规模更⼩的⼦问题,并且这些⼦问题具有与原问题相同的解决⽅法。
b. 当我们知道规模更⼩的⼦问题(规模为 n - 1)的解时,我们可以直接计算出规模为 n 的问题的解。
c. 存在⼀种简单情况,或者说当问题的规模⾜够⼩时,我们可以直接求解问题。 - ⼀般的递归求解过程如下:
a. 验证是否满⾜简单情况。
b. 假设较⼩规模的问题已经解决,解决当前问题。 - 如何递归
a. 了解递归展开细节图
b. 二叉树中的题目大多都是递归可以尝试练习
c. 宏观的看待递归的过程
<1>不要在意递归的细节展开图
<2>把递归的函数当成一个黑盒
<3>相信这个黑盒一定能完成这个任务 - 如何写一个递归
a. 先找到相同的子问题------------>函数头的设计
b. 只关心某一个子问题是如何解决的------------>函数体的书写
c. 注意一下递归函数的出口即可
二、递归示例:
2.1 汉诺塔问题
- 题⽬链接:⾯试题 08.06. 汉诺塔问题
- 题⽬描述:
- 解法(递归):
算法思路:
这是⼀道递归⽅法的经典题⽬,我们可以先从最简单的情况考虑:
• 假设 n = 1,只有⼀个盘⼦,很简单,直接把它从 A 中拿出来,移到 C 上;
• 如果 n = 2 呢?这时候我们就要借助 B 了,因为⼩盘⼦必须时刻都在⼤盘⼦上⾯,共需要 3 步(为了⽅便叙述,记 A 中的盘⼦从上到下为 1 号,2 号):
a. 1 号盘⼦放到 B 上;
b. 2 号盘⼦放到 C 上;
c. 1 号盘⼦放到 C 上。
⾄此,C 中的盘⼦从上到下为 1 号, 2 号。
• 如果 n > 2 呢?这是我们需要⽤到 n = 2 时的策略,将 A 上⾯的两个盘⼦挪到 B 上,再将最⼤的盘⼦挪到 C 上,最后将 B 上的⼩盘⼦挪到 C 上就完成了所有步骤。例如 n = 3 时如下图:
因为 A 中最后处理的是最⼤的盘⼦,所以在移动过程中不存在⼤盘⼦在⼩盘⼦上⾯的情况。
则本题可以被解释为:
- 对于规模为 n 的问题,我们需要将 A 柱上的 n 个盘⼦移动到C柱上。 (1)
- 规模为 n 的问题可以被拆分为规模为 n-1 的⼦问题: (2)
a. 将 A 柱上的上⾯ n-1 个盘⼦移动到B柱上。
b. 将 A 柱上的最⼤盘⼦移动到 C 柱上,然后将 B 柱上的 n-1 个盘⼦移动到C柱上。 - 当问题的规模变为 n=1 时,即只有⼀个盘⼦时,我们可以直接将其从 A 柱移动到 C 柱。
需要注意的是,步骤 (2).b 考虑的是总体问题中的 ⼦问题b 情况。在处理⼦问题的 ⼦问题b 时,我们应该将 A 柱中的最上⾯的盘⼦移动到 C 柱,然后再将 B 柱上的盘⼦移动到 C 柱。在处理总体问题的 ⼦问题b 时,A 柱中的最⼤盘⼦仍然是最上⾯的盘⼦,因此这种做法是通⽤的。
- 算法流程:
递归函数设计:void hanotaa(vector& A, vector& B, vector& C, int n)
- 返回值:⽆;
- 参数:三个柱⼦上的盘⼦,当前需要处理的盘⼦个数(当前问题规模)。
- 函数作⽤:将 A 中的上⾯ n 个盘⼦挪到 C 中。
- 递归函数流程:
- 当前问题规模为 n=1 时,直接将 A 中的最上⾯盘⼦挪到 C 中并返回;
- 递归将 A 中最上⾯的 n-1 个盘⼦挪到 B 中;
- 将 A 中最上⾯的⼀个盘⼦挪到 C 中;
- 将 B 中上⾯ n-1 个盘⼦挪到 C 中。
- C++代码
class Solution {
public:
void dfs(vector<int>& a,vector<int>& b,vector<int>& c,int n)
{
if(n==1)
{
c.push_back(a.back());
a.pop_back();
return;
}
dfs(a,c,b,n-1);
c.push_back(a.back());
a.pop_back();
dfs(b,a,c,n-1);
}
void hanota(vector<int>& A, vector<int>& B, vector<int>& C)
{
dfs(A,B,C,A.size());
}
};
2.2 合并两个有序链表
- 题⽬链接:21. 合并两个有序链表
- 题⽬描述:
- 解法(递归):
算法思路:
- 递归函数的含义:交给你两个链表的头结点,你帮我把它们合并起来,并且返回合并后的头结点;
- 函数体:选择两个头结点中较⼩的结点作为最终合并后的头结点,然后将剩下的链表交给递归函数去处理;
- 递归出⼝:当某⼀个链表为空的时候,返回另外⼀个链表。
注意注意注意:链表的题⼀定要画图,搞清楚指针的操作!
- C++代码
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* mergeTwoLists(ListNode* list1, ListNode* list2)
{
if(list1==nullptr)return list2;
if(list2==nullptr)return list1;
if(list1->val>=list2->val)
{
list2->next=mergeTwoLists(list1,list2->next);
return list2;
}
else
{
list1->next=mergeTwoLists(list1->next,list2);
return list1;
}
}
};
2.3 反转链表
- 题⽬链接:206. 反转链表
- 题⽬描述:
- 解法(递归):
算法思路:
- 递归函数的含义:交给你⼀个链表的头指针,你帮我逆序之后,返回逆序后的头结点;
- 函数体:先把当前结点之后的链表逆序,逆序完之后,把当前结点添加到逆序后的链表后⾯即可;
- 递归出⼝:当前结点为空或者当前只有⼀个结点的时候,不⽤逆序,直接返回。
注意注意注意:链表的题⼀定要画图,搞清楚指针的操作!
- C++代码
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* reverseList(ListNode* head)
{
if(head==nullptr||head->next==nullptr)return head;
ListNode* newhead=reverseList(head->next);
head->next->next=head;
head->next=nullptr;
return newhead;
}
};
2.4 两两交换链表中的节点
- 题⽬链接:24. 两两交换链表中的节点
- 题⽬描述:
- 解法(递归):
算法思路:
- 递归函数的含义:交给你⼀个链表,将这个链表两两交换⼀下,然后返回交换后的头结点;
- 函数体:先去处理⼀下第⼆个结点往后的链表,然后再把当前的两个结点交换⼀下,连接上后⾯处理后的链表;
- 递归出⼝:当前结点为空或者当前只有⼀个结点的时候,不⽤交换,直接返回。
注意注意注意:链表的题⼀定要画图,搞清楚指针的操作!
- C++代码
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* swapPairs(ListNode* head)
{
if(head==nullptr||head->next==nullptr)return head;
ListNode*newhead=swapPairs(head->next->next);
ListNode* prev=head->next;
head->next->next=head;
head->next=newhead;
return prev;
}
};
2.5 Pow(x, n)
- 题⽬链接:50. Pow(x, n)
- 题⽬描述:
- 解法(递归 - 快速幂):
算法思路:
- 递归函数的含义:求出 x 的 n 次⽅是多少,然后返回;
- 函数体:先求出 x 的 n / 2 次⽅是多少,然后根据 n 的奇偶,得出 x 的 n 次⽅是多少;
- 递归出⼝:当 n 为 0 的时候,返回 1 即可。
- C++代码
class Solution {
public:
double myPow(double x, long long n)
{
if(n==0)return 1;
return n>0?dfs(x,abs(n)):1.0/dfs(x,abs(n));
}
double dfs(double x,long long n)
{
if(n==1)return x;
double tmp=dfs(x,n/2);
return n%2==0?tmp*tmp:tmp*tmp*x;
}
};