【递归、回溯及搜索】No.1---递归


前言

在这里插入图片描述

👧个人主页:@小沈YO.
😚小编介绍:欢迎来到我的乱七八糟小星球🌝
📋专栏:递归、回溯及搜索
🔑本章内容:递归
记得 评论📝 +点赞👍 +收藏😽 +关注💞哦~


一、递归简介:

  • 在解决⼀个规模为n的问题时,如果满⾜以下条件,我们可以使⽤递归来解决:
    a. 问题可以被划分为规模更⼩的⼦问题,并且这些⼦问题具有与原问题相同的解决⽅法
    b. 当我们知道规模更⼩的⼦问题(规模为 n - 1)的解时,我们可以直接计算出规模为 n 的问题的解。
    c. 存在⼀种简单情况,或者说当问题的规模⾜够⼩时,我们可以直接求解问题。
  • ⼀般的递归求解过程如下:
    a. 验证是否满⾜简单情况。
    b. 假设较⼩规模的问题已经解决,解决当前问题。
  • 如何递归
    a. 了解递归展开细节图
    b. 二叉树中的题目大多都是递归可以尝试练习
    c. 宏观的看待递归的过程
    <1>不要在意递归的细节展开图
    <2>把递归的函数当成一个黑盒
    <3>相信这个黑盒一定能完成这个任务
  • 如何写一个递归
    a. 先找到相同的子问题------------>函数头的设计
    b. 只关心某一个子问题是如何解决的------------>函数体的书写
    c. 注意一下递归函数的出口即可

二、递归示例:

2.1 汉诺塔问题

  1. 题⽬链接:⾯试题 08.06. 汉诺塔问题
  2. 题⽬描述:
    在这里插入图片描述
  3. 解法(递归):
    算法思路:
    这是⼀道递归⽅法的经典题⽬,我们可以先从最简单的情况考虑:
    • 假设 n = 1,只有⼀个盘⼦,很简单,直接把它从 A 中拿出来,移到 C 上;
    • 如果 n = 2 呢?这时候我们就要借助 B 了,因为⼩盘⼦必须时刻都在⼤盘⼦上⾯,共需要 3 步(为了⽅便叙述,记 A 中的盘⼦从上到下为 1 号,2 号):
    a. 1 号盘⼦放到 B 上;
    b. 2 号盘⼦放到 C 上;
    c. 1 号盘⼦放到 C 上。
    ⾄此,C 中的盘⼦从上到下为 1 号, 2 号。
    • 如果 n > 2 呢?这是我们需要⽤到 n = 2 时的策略,将 A 上⾯的两个盘⼦挪到 B 上,再将最⼤的盘⼦挪到 C 上,最后将 B 上的⼩盘⼦挪到 C 上就完成了所有步骤。例如 n = 3 时如下图:
    在这里插入图片描述
    因为 A 中最后处理的是最⼤的盘⼦,所以在移动过程中不存在⼤盘⼦在⼩盘⼦上⾯的情况。
    则本题可以被解释为:
  • 对于规模为 n 的问题,我们需要将 A 柱上的 n 个盘⼦移动到C柱上。 (1)
  • 规模为 n 的问题可以被拆分为规模为 n-1 的⼦问题: (2)
    a. 将 A 柱上的上⾯ n-1 个盘⼦移动到B柱上。
    b. 将 A 柱上的最⼤盘⼦移动到 C 柱上,然后将 B 柱上的 n-1 个盘⼦移动到C柱上。
  • 当问题的规模变为 n=1 时,即只有⼀个盘⼦时,我们可以直接将其从 A 柱移动到 C 柱。

需要注意的是,步骤 (2).b 考虑的是总体问题中的 ⼦问题b 情况。在处理⼦问题的 ⼦问题b 时,我们应该将 A 柱中的最上⾯的盘⼦移动到 C 柱,然后再将 B 柱上的盘⼦移动到 C 柱。在处理总体问题的 ⼦问题b 时,A 柱中的最⼤盘⼦仍然是最上⾯的盘⼦,因此这种做法是通⽤的。

  1. 算法流程:
    递归函数设计:void hanotaa(vector& A, vector& B, vector& C, int n)
  • 返回值:⽆;
  • 参数:三个柱⼦上的盘⼦,当前需要处理的盘⼦个数(当前问题规模)。
  • 函数作⽤:将 A 中的上⾯ n 个盘⼦挪到 C 中。
  1. 递归函数流程:
  • 当前问题规模为 n=1 时,直接将 A 中的最上⾯盘⼦挪到 C 中并返回;
  • 递归将 A 中最上⾯的 n-1 个盘⼦挪到 B 中;
  • 将 A 中最上⾯的⼀个盘⼦挪到 C 中;
  • 将 B 中上⾯ n-1 个盘⼦挪到 C 中。
  1. C++代码
class Solution {
public:
    void dfs(vector<int>& a,vector<int>& b,vector<int>& c,int n)
    {
        if(n==1)
        {
            c.push_back(a.back());
            a.pop_back();
            return;
        }
        dfs(a,c,b,n-1);
        c.push_back(a.back());
        a.pop_back();
        dfs(b,a,c,n-1);

    }
    void hanota(vector<int>& A, vector<int>& B, vector<int>& C) 
    {
        dfs(A,B,C,A.size());
    }
};

2.2 合并两个有序链表

  1. 题⽬链接:21. 合并两个有序链表
  2. 题⽬描述:
    在这里插入图片描述
  3. 解法(递归):
    算法思路:
  • 递归函数的含义:交给你两个链表的头结点,你帮我把它们合并起来,并且返回合并后的头结点;
  • 函数体:选择两个头结点中较⼩的结点作为最终合并后的头结点,然后将剩下的链表交给递归函数去处理;
  • 递归出⼝:当某⼀个链表为空的时候,返回另外⼀个链表。

注意注意注意:链表的题⼀定要画图,搞清楚指针的操作!

  1. C++代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) 
    {
        if(list1==nullptr)return list2;
        if(list2==nullptr)return list1;
        if(list1->val>=list2->val)
        {
            list2->next=mergeTwoLists(list1,list2->next);
            return list2;
        }
        else 
        {
            list1->next=mergeTwoLists(list1->next,list2);
            return list1;
        }
    }
};

2.3 反转链表

  1. 题⽬链接:206. 反转链表
  2. 题⽬描述:
    在这里插入图片描述
  3. 解法(递归):
    算法思路:
  • 递归函数的含义:交给你⼀个链表的头指针,你帮我逆序之后,返回逆序后的头结点;
  • 函数体:先把当前结点之后的链表逆序,逆序完之后,把当前结点添加到逆序后的链表后⾯即可;
  • 递归出⼝:当前结点为空或者当前只有⼀个结点的时候,不⽤逆序,直接返回。

注意注意注意:链表的题⼀定要画图,搞清楚指针的操作!

  1. C++代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* reverseList(ListNode* head) 
    {
        if(head==nullptr||head->next==nullptr)return head;
        ListNode* newhead=reverseList(head->next);
        head->next->next=head;
        head->next=nullptr;
        return newhead;
    }
};

2.4 两两交换链表中的节点

  1. 题⽬链接:24. 两两交换链表中的节点
  2. 题⽬描述:
    在这里插入图片描述
  3. 解法(递归):
    算法思路:
  • 递归函数的含义:交给你⼀个链表,将这个链表两两交换⼀下,然后返回交换后的头结点;
  • 函数体:先去处理⼀下第⼆个结点往后的链表,然后再把当前的两个结点交换⼀下,连接上后⾯处理后的链表;
  • 递归出⼝:当前结点为空或者当前只有⼀个结点的时候,不⽤交换,直接返回。

注意注意注意:链表的题⼀定要画图,搞清楚指针的操作!

  1. C++代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* swapPairs(ListNode* head) 
    {
        if(head==nullptr||head->next==nullptr)return head;
        ListNode*newhead=swapPairs(head->next->next);
        ListNode* prev=head->next;
        head->next->next=head;
        head->next=newhead;
        return prev;
    }
};

2.5 Pow(x, n)

  1. 题⽬链接:50. Pow(x, n)
  2. 题⽬描述:
    在这里插入图片描述
  3. 解法(递归 - 快速幂):
    算法思路:
  • 递归函数的含义:求出 x 的 n 次⽅是多少,然后返回;
  • 函数体:先求出 x 的 n / 2 次⽅是多少,然后根据 n 的奇偶,得出 x 的 n 次⽅是多少;
  • 递归出⼝:当 n 为 0 的时候,返回 1 即可。
  1. C++代码
class Solution {
public:
    double myPow(double x, long long  n) 
    {
        if(n==0)return 1;
        return n>0?dfs(x,abs(n)):1.0/dfs(x,abs(n));
    }
    double dfs(double x,long long n)
    {
        if(n==1)return x;
        double tmp=dfs(x,n/2);
        return n%2==0?tmp*tmp:tmp*tmp*x;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小沈YO.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值