洛谷 P1588 丢失的牛(USACO)广搜

该博客介绍了USACO竞赛中的一道问题——'丢失的牛',讨论了解决方案。FJ需要找回位于直线上的牛,其特殊移动方式包括前进、后退和跳到2倍当前位置。文章通过广度优先搜索算法(BFS)来求解FJ追上牛的最小步数,并提供了输入输出样例和思路分析,但未提及剪枝优化。
摘要由CSDN通过智能技术生成

题目描述

FJ丢失了他的一头牛,他决定追回他的牛。已知FJ和牛在一条直线上,初始位置分别为x和y,假定牛在原地不动。FJ的行走方式很特别:他每一次可以前进一步、后退一步或者直接走到2*x的位置。计算他至少需要几步追上他的牛。

输入格式:

第一行为一个整数t(≤10),表示数据组数;接下来每行包含一个两个正整数x和y(0<x,y≤10^5),分别表示FJ和牛的坐标。

输出格式:

对于每组数据,输出最少步数。

输入样例:

1 
5 17

输出样例:

4

 

思路:

简单的广搜,这个代码可能时间稍长,没加剪枝。难度还好。

// luogu-judger-enable-o2
#pragma GCC optimize ("O3")//无耻的优化QAQ_
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
int x,x1,next,n;
int step[100001];//step表示步数
bool book[100001];//标记数组
int main() {
	cin>>n;
	for(int i=1; i<=n; i++) 
	{
		memset(step,0,sizeof(step));
		memset(book,0,sizeof(book));//每次都置0
		cin>&
题目描述 农夫约翰一直在观察他的奶们。他注意到,如果在群中有太多的靠得太近,就会导致不健康的行为和情感问题。 约翰想知道他的群是否存在这个问题。他定义这个问题为:在一个固定长度的路段上,如果有两头高度大于等于 $y$ 的奶之间的距离小于 $x$,则群中就存在一个挤得太近的情况。 约翰有 $N$ 头 ($1 \leq N \leq 50,000$),每头的高度为 $h_i$ ($1 \leq h_i \leq 1,000,000$)。他想知道是否存在一对,使得它们之间的距离小于 $x$,且它们的高度都大于等于 $y$。 输入格式 第一行包含三个整数 $N, L, R$,分别表示的数量,路段长度,和问题的最大高度。 接下来 $N$ 行,每行一个整数 $h_i$,表示每头的高度。 输出格式 如果存在一对,它们之间的距离小于 $x$,且它们的高度都大于等于 $y$,则输出 $1$,否则输出 $0$。 输入样例1 4 6 4 4 4 5 7 输出样例1 1 输入样例2 5 3 3 1 5 5 5 5 输出样例2 0 提示 对于 $30\%$ 的数据,$N \leq 500$。 对于 $100\%$ 的数据,$1 \leq N \leq 50,000$,$1 \leq L \leq 1,000,000$,且 $L \leq R$。 数据范围 时间限制:1.0s,空间限制:256MB 算法1 (暴力枚举) $O(n^2)$ 首先对输入的的高度进行排序,之后枚举每头,再枚举它后面的每头,如果两头的高度均大于等于 $y$,且它们之间的距离小于 $x$,则输出 $1$。如果最后仍然没有满足条件的,则输出 $0$。 时间复杂度 暴力枚举,时间复杂度为 $O(n^2)$,无法通过此题。 算法2 (滑动窗口) $O(n \log n)$ 为了方便后续操作,我们将所有的按照它们的高度从小到大排序。之后,我们维护一个长度为 $L$ 的滑动窗口,它的右端点与左端点之间的距离小于 $x$。我们从左到右扫描每头,将它加入滑动窗口的左端点,同时将滑动窗口右移,直到滑动窗口的右端点与左端点之间的距离小于 $x$。 在处理完一头之后,我们需要判断滑动窗口中是否存在一对,它们的高度均大于等于 $y$,且它们之间的距离小于 $x$。我们可以用双指针来实现这个操作。我们从滑动窗口的左端点开始,向右移动一个指针 $i$,同时向右移动一个指针 $j$,直到 $h_j - h_i \leq x$。在这个过程中,我们需要判断 $h_i$ 和 $h_j$ 是否均大于等于 $y$。如果存在一对满足条件,则输出 $1$。如果最后仍然没有满足条件的,则输出 $0$。 时间复杂度 因为需要对所有的进行排序,所以时间复杂度为 $O(n \log n)$。 C++ 代码 算法3 (暴力优化) $O(n \log n)$ 首先对输入的的高度进行排序,之后枚举每头。如果当前的高度小于 $y$,则跳过这头。否则,我们从它的左边和右边各扩展出一个长度为 $x$ 的区间。如果这两个区间内的的数量均大于等于 $2$,且这两个区间中任意两头的高度均大于等于 $y$,则输出 $1$。 时间复杂度 因为需要对所有的进行排序,所以时间复杂度为 $O(n \log n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值