经典动态规划问题详解以及其主要应用场景

动态规划是一种通过分解子问题并利用记忆化减少重复计算来解决问题的数学和计算机科学方法。核心思想是拆分问题,适用范围包括线性、区域、树形和背包问题。文章通过青蛙跳台阶的例子介绍了动态规划的解题步骤,包括递归、记忆化递归和动态规划解法,并强调了边界条件和状态转移方程的重要性。
摘要由CSDN通过智能技术生成


在这里插入图片描述

0、概念

0.1 定义:

** 动态规划(英语:Dynamic programming,简称 DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。。

0.2 核心思想:

动态规划最核心的思想,就在于拆分子问题,记住过往,减少重复计算。

0.3 适用范围:

什么样的题目适合动态规划? 如果一个问题,可以把所有可能的答案穷举出来,并且穷举出来后,发现存在重叠子问题,就可以考虑使用动态规划。
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法,常见的分类如下,具体啥含义可以自行查询:动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类
1、线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;
2、区域动规:石子合并,加分二叉树,统计单词个数,炮兵布阵等;
3、树形动规:贪吃的九头龙,二分查找书,聚会的欢乐,数字三角形等;
4、背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶等;
5、应用实例:最短路径问题,项目管理,网络流优化等。

0.4 基本步骤:

动态规划的核心思想就是拆分子问题,记住过往,减少重复计算。 并且动态规划一般都是自底向上的,动态规划的大致思路:

  1. 穷举分析
  2. 确定边界
  3. 找出规律,确定最优子结构
  4. 写出状态转移方程

1、例子

问题:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 10 级的台阶总共有多少种跳法?

这个问题乍一看无从分析,但是穷举是可以的,我们倒着推要想:
1、跳到第10级台阶,要么是先跳到第9级,然后再跳1级台阶上去;要么是先跳到第8级,然后一次迈2级台阶上去。
同理,要想跳到第9级台阶,要么是先跳到第8级,然后再跳1级台阶上去;要么是先跳到第7级,然后一次迈2级台阶上去。
要想跳到第8级台阶,要么是先跳到第7级,然后再跳1级台阶上去;要么是先跳到第6级,然后一次迈2级台阶上去。

化成数学公式

f(10= f(9+f(8)
f (9)  = f(8) + f(7)
f (8)  = f(7) + f(6)
...
f(3) = f(2) + f(1)

即通用公式为: f(n) = f(n-1) + f(n-2)

1.1、解法一:递归

    //伪代码
    int recursion (int n) {
    if(n == 1){ return 1;}
    if(n == 2){ return 2;}
    return recursion (n-1) + recursion (n-2);
    }

递归算法有缺点,当这个n很大时候,那么系统开销很大,因为要调用的层级太多,系统保存的量很大,而起很多是重复量,优化代码如下

1.2、解法二:带记录的递归

    //伪代码
    //用map保存计算过程量,作为备忘录
    Map<Integer, Integer> recordMap = new HashMap();
    int recursion (int n) {
    if(n == 1){ return 1;}
    if(n == 2){ return 2;}

    //先判断有没计算过,即看看备忘录有没有
    if (recordMap.containsKey(n)) {return recordMap.get(n);} 
    else {
    // 备忘录没有,即没有计算过,执行递归计算,并且把结果保存到备忘录map中
      recordMap.put(n, (numWays(n - 1) + numWays(n - 2)) % 1000000007);   //防止越界
       return recordMap.get(n);}
    }

1.3、解法三:动态规划

动态规划其实包含上述递归的思想,但是和带记录的递归不一样的是,递归是自上而下的,动态规划是自下而上的,取得局部最优解在往上去取得上层最优解,并且局部最优解不受上层影响。

    //伪代码
    int numWays(int n) {
    if (n<= 1) {return 1;}
    if (n == 2) {return 2;}
    int a = 1,b = 2;;
    int temp = 0;
    for (int i = 3; i <= n; i++) 
    {
        temp = (a + b)% 1000000007;
        a = b;
        b = temp;
    }
      return temp;
    }

2、总结

对应0的解题步骤,结合1的实例可以看出主要步骤

  1. 穷举分析:
    首先对于问题,我们一步步分析其中规律,确定该问题是不是该
    问题穷举法完成,不管其复杂与否。

  2. 确定边界:
    通过穷举分析,我们发现,当台阶数是1的时候或者2的时候,可 以明确知道青蛙跳法。f(1) =1,f(2) = 2,当台阶n>=3时,已经呈现出规律f(3) = f(2) + f(1) =3,因此f(1) =1,f(2) = 2就是青蛙跳阶的边界。

  3. 找出规律,确定最优子结构:
    n>=3时,已经呈现出规律 f(n) = f(n-1) + f(n-2) ,因此,f(n-1)和f(n-2) 称为 f(n) 的最优子结构,关于最优子结构,我是这么理解的,就是可以用一个公式表示该问题的所有一般规律,并且是无记忆的。

  4. 写出状态转移方程:
    f(n) = f(n-1) + f(n-2)
    f(1) =1,f(2) = 2

  5. 代码实现一般模板:

dp[0][0][...] = 边界值
for(状态1 :所有状态1的值){
  for(状态2 :所有状态2的值){
      for(...){
        //状态转移方程
        dp[状态1][状态2][...] = 求最值
      }
  }
}

3、引用

1、看一遍就理解:动态规划详解
2、算法-动态规划 Dynamic Programming–从菜鸟到老鸟
3、第9章 动态规划
4、动态规划的实际应用:图片压缩算法


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂的挖掘机

谢谢大家的厚爱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值