anaconda3 安装 tensorflow1.x + tensorflow 2.x 步骤 (win10)

最近初学深度学习,原本是tensorflow 1.x 版本,找到一个pdf教程,用的是 2.x 版本,想跟着学一学,所以就试一下了。但是安装这个玩意儿挺麻烦,环境配置的时候遇到了很多坑,卸了装,装了卸,前前后后装了很多遍,报错也很多,足足折腾了两天多的时间,算是成功安装了,分享一下安装的步骤。

1. 安装anaconda3

首先安装anaconda3,这类教程很多了,不再赘述。
详细教程:Anaconda详细安装及使用教程
啰嗦一句,安装好了anaconda之后,为了让你的conda安装包的时候更好用,需要做以下两个事情。

  1. 添加镜像源
  2. 修改配置

1.1 添加镜像源

清华源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
 
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

中科大源

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
 
conda config --set show_channel_urls yes

删除源

conda config --remove-key $channels

参考地址:Anaconda 镜像源操作(查看配置删除)

1.2 修改配置

如果在安装其他包的时候,执行 conda install xxxxx,处理环境的时候,等呀等呀等不到,最终等到一句报错:

Solving environment: failed with initial frozen solve.

查了很多解决办法,用以下办法基本可以解决:

更新conda到最新版本:
conda update -n base conda
第二次更新conda到最新版本:
conda update -n base conda
第二次很重要。更新完后,执行:
conda update --all
再执行这个命令。
conda config --set channel_priority flexible
然后就ok了。

2. 安装CUDA + CUDNN

注意自己的显卡版本和cuda版本对应。我的cuda用的是10.0版本。

3. 安装tensorflow 1.x

保证安装好了anaconda3之后。win + r 输入cmd,打开dos窗口。输入命令
conda install keras
这个装完默认会安装tensorflow 的CPU版本。
因为已经配置了GPU环境,那再装一下tensorflow的GPU版本。
conda install tensorflow-gpu
安装成功后,测试一下,在当前dos窗口中输入python,进入base的虚拟环境。
输入命令,查看tensorflow版本。

import tensorflow as tf
tf.__version__

我这里返回的是1.13.1

4. 安装tensorflow 2.x

win + r 输入cmd,打开dos窗口。首先我们创建tensorflow 2的虚拟环境:输入命令,虚拟环境起名叫 TF2 ,python版本 3.7
conda create -n TF2 python=3.7
切换到TF2的环境中
activate TF2
重点来了,之前踩的坑都是用conda install tensorflow,因为我当时考虑到,用conda可以安装所需的依赖项,妄想一步到位省省事,然而并不是。
这里我们用它
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -U tensorflow
一直等到安装彻底结束。
需要msvcp140_1.dll文件,否则会显示导入错误。可以从微软官网上下载并安装(vc_redist_x64.exe),如图
官方下载地址:https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

然后替换一下动态链接库,否则会在import之后提示找不到DLL库。
打开我的电脑,找到CUDA的安装路径,我的是这个:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin

找到文件 cudart64_100.dll ,在原地复制粘贴,然后重命名为 cudart64_101.dll 就彻底ok了。

5. 测试一下

win + r 输入cmd,打开dos窗口。activate TF2 切换到TF2环境,输入python 进入python。
输入命令,查看tensorflow版本。

import tensorflow as tf
tf.__version__

看一下结果。

展开阅读全文
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值