K邻近算法(KNN)

K-Nearest Neighbor  KNN算法

如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

所选择的邻居都是已经正确分类的对象。


如果K=3,则绿色圆形的类别与红色三角形相同
如果K=5,则绿色圆形的类别与蓝色正方形相同

The choice of distance is a hyperparameter.
K的选择: 不同问题不同对待,一般是尝试很多不同的K值,找到最好的。
  •    Choose hyperparameters that work best on the data.

BAD:K=1 always works perfectly on training data
  • Split data into train and test, choose hyperparameters that work best on test data.

BAD: test set is a  proxy for the generalization performance, using only at the end.


(交叉验证)用四个fold作为训练,一个fold作为验证,循环。


距离选择:

K-Nearest Neighbor on images never used.
效率低
并不提供详细的信息

KNN算法matlab实现(一次预测一个点)
function ytest = KNN(X, y, Xtest, k)

% X = [1,3; 2,2; 1,1; 3,1; 3,0.5; 2,0.5]
% y = [0;0;1;1;1;1]
% Xtest = [1,2]
% k =3 k =5

m = size(X,1);
n = size(X,2);
mtest = size(Xtest,1);

dis = zeros(m,1);

for i = 1:m,
	temp = 0;
	for j = 1:n
		temp = temp + (Xtest(1,j) - X(i,j))^2;
	end;
	temp = temp.^0.5;
	dis(i,1) = temp;
end;


ordered_dis = sort(dis);
disp(ordered_dis);
max_dis = ordered_dis(k);
index = find(dis<=max_dis);

num = size(index,1);
tar_y = y(index);

count = zeros(num,1);
for i = 1:num,
	count(i) = size(find(tar_y == tar_y(i)),1);
end;

tar_index = find(count==max(count));
ytest = tar_y(tar_index(1));


TIPS: 在matlab中,for循环中无法改变循环变量的值,用while可以。


Python实现

import numpy

def KNN(X, y, Xtest, k):


    m = X.shape[0]
    n = X.shape[1]
    print(m)
    print(n)

    ytest = 0

    temp = (numpy.tile(Xtest, (m, 1)) - X)**2
    dis = []
    for z in range(m):
        s = 0
        for l in range(n):
            s = s + temp[z][l]
        dis.append(s ** 0.5)
    print(dis)

    index = numpy.argsort(dis)
    index = index[0:k]
    print(index)
    tar_y = []
    for i in index:
        tar_y.append(y[i])

    print(tar_y)
    count = 0
    class_index = 0
    for j in tar_y:
        print('j =',j)
        if count < tar_y.count(j):
            count = tar_y.count(j)
            print(count)
            ytest = tar_y[class_index]
        class_index = class_index + 1
    return ytest


X = numpy.array([[1, 3], [2, 2], [1, 1], [3, 1], [3, 0.5], [2, 0.5]])
y = [0, 0, 1, 1, 1, 1]
k = 3
Xtest = [1, 2]
ytest = KNN(X, y, Xtest, k)
print(ytest)




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值