关于Spark中Stage的传输Pipeline

关于Spark中Stage的传输Pipeline⭐


首先pipeline管道计算模式,pipeline只是一种计算思想,一种模式,跟MR不同于,pipeline是将逻辑完全走完才会进行结果的落地,MR则是计算一下持久化磁盘,再进行计算,这也是MR与Spark速度上差距的根本原因(代码实现Stage中的Pipeline)主要是体现了ReduceByKey的内部过程


object Pipeline {
  def main(args: Array[String]): Unit = {
    //创建连接
    val conf = new SparkConf()
    conf.setMaster("local").setAppName("PPLine");
    val sc = new SparkContext(conf)
    //设置一个两个并发数的数组(2个分区数)
    val rdd = sc.parallelize(Array(1, 2, 3, 4, 5, 6, 7, 8), 2)
  
    val rdd1: RDD[Int] = rdd.map(x => {
      println("rdd1----[pid" + TaskContext.get.partitionId + "]----" + x)
      x
    })
    val rdd2: RDD[Int] = rdd1.filter(x => {
      println("rdd2----[pid" + TaskContext.get.partitionId + "]----" + x)
      true
    })
    val rdd3: RDD[(String, Int)] = rdd2.map(x => {
      println("rdd3----[pid" + TaskContext.get.partitionId + "]----" + x)
      Tuple2("yjx" + x % 3, x)
    })

    //在RDD4中进行一个分区运算,在RDD4算子之后会被单独划分出一个stage用于计算(2——>4遇到宽依赖)
    val rdd4: RDD[(String, Int)] = rdd3.reduceByKey((sum: Int, value: Int) => {
      println("rdd4----[pid" + TaskContext.get.partitionId + "]----" + sum + "---" + value)
      sum + value
    }, 3)

    val rdd5: RDD[(String, Int)] = rdd4.map(x => {
      println("rdd5----[pid" + TaskContext.get.partitionId + "]----" + x)
      x
    })
    //启动算子
    rdd5.count
    sc.stop()
  }
}

以上代码就是体现了一组数据在pipeline的执行顺序,被划分两个stage,先是RDD1RDD4之间的一个简单的打印过滤(`stage1`),再是RDD4RDD5之间的一个计算打印(stage2)


//含义如下:
  /*
      stage1(
        for(i=0;i<2;i++){
          new Thread(
            textFile-->rdd1()
            rdd2()
            rdd3()-->ShuffleWrite
          ).start()
        }
      )
      stage2(
        for(i=0;i<1;i++){
          new Thread(
            shuffleRead--->rdd4()
            rdd5()
          ).start()
        }
      )
    */


在这里插入图片描述


在这里插入图片描述

流程图:
在这里插入图片描述


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每日小新

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值