一、SEED数据集
二、论文阅读
题目:基于生理信号的情感计算研究综述-权学良
情绪分类:离散型情绪和连续性情绪;离散性情绪就是具体的几类:
1.生气、讨厌、害怕、高兴、悲伤和惊讶等 6
种基本情绪类别
2.生气、焦虑、幸福等 15 种类别
3.生气、害怕、悲伤、讨厌、期待、惊讶、赞成、高兴
连续性情绪:
1.VA模型(唤醒度和愉悦度)
2.VAD模型(愉悦度,唤醒度,支配度)
情感计算中的生理信号:
包括:脑电、眼动肌电、皮肤电、心电、呼吸等
在基于脑电信号的情绪识别任务中
,
需要对脑电信号进行预处理以提高信号的质量.
预处理一般
包括
降采样、滤波、去除伪迹以及特征提取等环节
. 常见的
脑电信号分析方法有独立成分分析 (Independent component analysis, ICA)、功率谱密度分析 (Power spectral density, PSD)、小波分析(Wavelet analysis, WA)
等
.
基于脑电的情绪识别主要包括以下步骤
:
1)
对被试进行外界刺激
,
使其产生高兴、悲伤、愤怒等情绪变化,
同时采集被试的脑电信号
.
刺激
方式包括图片
、视频
、音乐
等
.
2)
对所采集的脑电信号进行预处理
,
包括降采样、去除眼动信号和肌电信号等噪声,
以及带通滤
波、空间滤波等
.
3)
特征提取和特征选择
.
4)
训练分类器以及测试
情感计算常用公开数据集:
SEED、DEAP

生理信号的特征提取: