上海交大情感脑电数据集(SJTU Emotion EEG Dataset,SEED)

SJTU 情感脑电数据集(SEED)是由BCMI实验室提供的EEG数据集的集合,该实验室由吕宝粮教授领导 。

SEED数据集介绍

在这里插入图片描述
SEED数据集包含对象观看电影剪辑时的脑电信号。仔细选择影片剪辑,以引起不同类型的情感,包括积极(positive),消极(negative)和中性(neutral)的情感

1、刺激与实验

从材料库(6部电影)中选择了15个中国电影剪辑(正面,中性和负面情绪)作为实验中使用的刺激。 胶片夹的选择标准如下:
(a)整个实验的时间不应太长,以免会使受试者感到疲劳;
(b)影片应理解无须说明;
(c)视频应引起一种期望的目标情感。 每个影片剪辑的持续时间约为4分钟。
每个影片剪辑都经过精心编辑,以产生连贯的情感,并最大化情感含义。 实验中使用的影片剪辑的详细信息如下:earthquake=aftershock
在这里插入图片描述

### EEG情感识别常用数据集 EEG情感识别的研究依赖于高质量的数据集,这些数据集通常包含了受试者在不同情绪状态下的波记录。以下是几个常用的EEG情感识别数据集: #### 1. **DEAP (Dataset for Emotion Analysis using Physiological signals)** DEAP 数据集是一个公开可用的情感分析数据集,包含来自32名参与者的生理信号记录[^1]。每位参与者观看了40段音乐视频片段,每段持续约一分钟。采集的信号包括多导联EEG、皮肤反应(GSR)、心率(EOG)等。该数据集提供了详细的标注信息,包括效价(valence)、唤醒度(arousal)以及其他主观评价指标。 #### 2. **SEED (Session-based EEG Dataset)** SEED 是由华南理工大学发布的一个基于会话的EEG数据集[^2]。它包含多个版本(如 SEED, SEED-IV 和 SEED-V),其中 SEED-IV 版本最为流行。该数据集通过让参与者观看影剪辑来诱发特定的情绪状态,并收集了相应的EEG信号。SEED 的特点是其跨会话设计,允许研究者探索长期变化和个体差异的影响。 #### 3. **MAHNOB-HCI** 这是一个综合性的多模态情感数据库,涵盖了面部表情、语音以及EEG等多种传感器数据[^3]。虽然 MAHNOB-HCI 并未专门针对EEG进行优化,但由于其丰富的标签体系和多样化的刺激材料,仍然是一个重要的资源。特别是对于希望结合多种生物信号进行建模的研究人员来说,这个数据集非常有用。 #### 4. **AffectivePhysio** 此数据集中除了常规的EEG外还加入了其他类型的生理参数测量结果作为补充信息源之一[^4]。它的独特之处在于强调身体反应与心理活动之间的关联性研究价值所在;因此非常适合那些想要深入了解人类整体健康状况下情绪波动规律特点的人群使用场景需求考虑因素等方面做出合理判断依据标准制定原则执行流程安排计划表单填写指南等内容提供全面指导帮助解答疑惑消除顾虑提升效率节省时间降低成本增加收益促进合作推动发展加快进度提高质量保障安全维护权益保护隐私尊重文化遵守法律遵循伦理坚持诚信履行责任践行承诺保持沟通加强交流增进理解深化友谊扩大影响树立形象塑造品牌建立信任赢得口碑创造价值实现目标完成使命达成愿景追求卓越不断创新持续改进共同成长共享成果共赢未来! ```python import numpy as np from sklearn.model_selection import train_test_split # 假设加载了一个名为 'deap_data' 的 NumPy 数组形式的 DEAP 数据集 X = deap_data['eeg_signals'] # 提取 EEG 信号部分 y = deap_data['labels'] # 对应的情绪标签 # 将数据划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 以上代码展示了如何从一个假设的 `deap_data` 中分离出 EEG 信号及其对应标签,并进一步将其拆分成训练集和验证集的过程。 ---
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值