一些常见的概率分布


前言

本文主要汇总了一些常见概率分布的概率质量函数(密度函数),矩母函数,均值和方差。其中矩母函数定义为:
ϕ ( t ) = E [ e t X ] \phi(t)=E[e^{tX}] ϕ(t)=E[etX]

一、离散概率分布

离散概率分布概率质量函数p(x)矩母函数均值方差
二项分布,参数为
n , p , 0 ⩽ p ⩽ 1 n,p, 0 \leqslant p \leqslant 1 n,p,0p1
( n x ) p x ( 1 − p ) n − x \tbinom{n}{x}p^x(1-p)^{n-x} (xn)px(1p)nx x = 0 , 1 , . . . , n x=0,1,...,n x=0,1,...,n ( p e t + ( 1 − p ) ) n (pe^t+(1-p))^n (pet+(1p))n n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布,参数为
λ , λ > 0 \lambda, \lambda>0 λ,λ>0
e − λ λ x x ! e^{-\lambda}\frac{\lambda^x}{x!} eλx!λx x = 0 , 1 , 2 , . . . x=0,1,2,... x=0,1,2,... e λ ( e t − 1 ) e^{\lambda(e^t-1)} eλ(et1) λ \lambda λ λ \lambda λ
几何分布,参数为
p , 0 ⩽ p ⩽ 1 p,0 \leqslant p \leqslant 1 p,0p1
p ( 1 − p ) x − 1 p(1-p)^{x-1} p(1p)x1 x = 1 , 2 , . . . x=1,2,... x=1,2,... p e t 1 − ( 1 − p ) e t \frac{pe^t}{1-(1-p)e^t} 1(1p)etpet 1 p \frac{1}{p} p1 1 − p p 2 \frac{1-p}{p^2} p21p

二、连续概率分布

连续概率分布概率密度函数矩母函数均值方差
(a,b)上的均匀分布 f ( x ) = { 1 b − a a < x < b 0 其 他 f(x)=\begin{cases} \frac{1}{b-a} & a<x<b \\ 0 & 其他\end{cases} f(x)={ba10a<x<b e b t − e a t ( b − a ) t \frac{e^{bt}-e^{at}}{(b-a)t} (ba)tebteat a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
指数分布,参数为 λ , λ > 0 \lambda, \lambda>0 λ,λ>0 f ( x ) = { λ e − λ x x ≥ 0 0 x < 0 f(x)=\begin{cases} \lambda e^{-\lambda x } & x \geq 0 \\ 0 & x<0\end{cases} f(x)={λeλx0x0x<0 λ λ − t \frac{\lambda}{\lambda-t} λtλ 1 λ \frac{1}{\lambda} λ1 1 λ 2 \frac{1}{\lambda ^2} λ21
伽马分布,参数为 ( n , λ ) , λ > 0 (n,\lambda),\lambda>0 (n,λ),λ>0 f ( x ) = { λ e − λ x ( λ x ) n − 1 ( n − 1 ) ! x ≥ 0 0 x < 0 f(x)=\begin{cases} \frac{\lambda e^{-\lambda x}(\lambda x)^{n-1}}{(n-1)!}& x \geq 0 \\ 0 & x<0\end{cases} f(x)={(n1)!λeλx(λx)n10x0x<0 ( λ λ − t ) n (\frac{\lambda}{\lambda-t})^n (λtλ)n n λ \frac{n}{\lambda} λn n λ 2 \frac{n}{\lambda ^2} λ2n
正太分布,参数为 ( μ , σ 2 ) (\mu, \sigma^2) (μ,σ2) f ( x ) = 1 2 π σ e x p { − ( x − μ ) 2 2 σ 2 } , f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}, f(x)=2π σ1exp{2σ2(xμ)2}, − ∞ < x < ∞ -\infty<x<\infty <x< e x p { μ t + σ 2 t 2 2 } exp\{\mu t+\frac{\sigma^2t^2}{2}\} exp{μt+2σ2t2} μ \mu μ σ 2 \sigma^2 σ2

注:exp为e

三、参考文献

Sheldon M.Ross, 《应用随机过程概率模型导论》, 人民邮电出版社,2016.3.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值