- 源自BZOJ3307的雨天的尾巴,是一道很好的图论题,结合了树上差分,离散化,权值线段树动态开点和线段树合并的知识,非常适合作为例题对概念进行理解。
- 题目:有 N (N≤10^5) 个点,形成一个树状结构。
有 M (M≤10^5) 次发放操作,每次选择两个点 x,y,对 x 到 y 的路径上(包括 x,y)的每个点发放一袋 z (z≤10^9) 类型的物品。
求完成所有发放操作后,每个点存放最多的是哪种类型的物品。
3.思路分析:本篇题解是将z的范围当作1~100000来写的,所以省略了离散化的过程。首先对题目进行分析。
(1)本题要求在树上,对x~y路径上的所有点加一个数z,求每个点所加的最多的数的值。
(2)区间修改,求单点数量最多的数,很容易想到权值线段树。
(3)又因为本题是在树上对路径修改,很容易想到与区间修改对应的差分,区间操作对应为路径操作,前缀和对应为子树和。根据题意,对x~y上路径所有的点加一个数z,则是在x,y处产生z,在lca(x,y)初消失z,在fa【lca(x,y)】处消失z。
(4)为了节省空间,我们采用动态开点的权值线段树。其中lc,rc维护左右节点,(因为动态开点,所以左右子树不一定满足2倍关系)。其次,每个点还具有一个big,代指这个点对应数量最多的数的数量是多少,一个now-big,代指这个点对应数量最多的数是几。用up()函数维护每一次向上更新的操作。merge()函数进行线段树的合并操作。calc()函数通过深度优先遍历,把每个节点所建的权值线段树进行合并即可。
4.贴上代码
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
int n,m;
vector<int>son[100010];
int v[100010];
int f[100010][30];
int t;
int d[100010];
int gen[100010];
int ans[100010];
queue<int>q;
struct SegmentTree{
int lc,rc;
int big;
int now_big;
}tr[100010*50];
int tot=0;
void up(int k)
{
if (tr[tr[k].lc].big>=tr[tr[k].rc].big)
{
tr[k].big=tr[tr[k].lc].big;
tr[k].now_big=tr[tr[k].lc].now_big;
}
else{
tr[k].big=tr[tr[k].rc].big;
tr[k].now_big=tr[tr[k].rc].now_big;
}
}
void insert(int &k,int l,int r,int val,int num)
{
if (!k) k=++tot;
if (l==r)
{
tr[k].big+=num;
tr[k].now_big=l;
return;
}
int mid=(l+r)>>1;
if (val<=mid) {
insert(tr[k].lc,l,mid,val,num);
}
else{
insert(tr[k].rc,mid+1,r,val,num);
}
up(k);
return;
}
int merge(int p,int q,int l,int r)
{
if (!p||!q) return p+q;
if (l==r)
{
tr[p].big+=tr[q].big;
tr[p].now_big=l;
return p;
}
int mid=(l+r)>>1;
tr[p].lc=merge(tr[p].lc,tr[q].lc,l,mid);
tr[p].rc=merge(tr[p].rc,tr[q].rc,mid+1,r);
up(p);
return p;
}
void calc(int root)
{
for (int i=0;i<son[root].size();i++)
{
int to=son[root][i];
if (to==f[root][0]) continue;
calc(to);
gen[root]=merge(gen[root],gen[to],1,100000);
}
if (tr[gen[root]].now_big) ans[root]=tr[gen[root]].now_big;
else ans[root]=0;
}
void bfs(int root)
{
q.push(root);
d[root]=1;
while (!q.empty())
{
int now=q.front();
q.pop();
for (int i=0;i<son[now].size();i++)
{
int to=son[now][i];
if (d[to]) continue;
d[to]=d[now]+1;
f[to][0]=now;
for (int j=1;j<=t;j++)
{
f[to][j]=f[f[to][j-1]][j-1];
}
q.push(to);
}
}
return;
}
int lca(int now,int to)
{
if (d[now]>d[to]) swap(now,to);
for (int i=t;i>=0;i--)
{
if (d[f[to][i]]>=d[now]) to=f[to][i];
}
if (to==now) return now;
for (int i=t;i>=0;i--)
{
if (f[now][i]!=f[to][i]) now=f[now][i],to=f[to][i];
}
return f[now][0];
}
int main()
{
//freopen("acmin.txt","r",stdin);
//freopen("acmout.txt","w",stdout);
cin>>n>>m;
t=(int)(log(n)/log(2))+1;
int a,b;
for (int i=1;i<n;i++)
{
scanf("%d%d",&a,&b);
son[b].push_back(a);
son[a].push_back(b);
}
int x,y,z;
bfs(1);
//for(int i=1;i<=n;i++) cout<<f[i][0]<<endl;
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
int fa=lca(x,y);
insert(gen[x],1,100000,z,1);
insert(gen[y],1,100000,z,1);
insert(gen[fa],1,100000,z,-1);
insert(gen[f[fa][0]],1,100000,z,-1);
}
calc(1);
for (int i=1;i<=n;i++)
{
printf("%d\n",ans[i]);
}
return 0;
}
提示:因为每个节点都会建立一个线段树,所以gen【i】代表节点i建立的线段树的根节点的tot值。