题目描述
原题链接
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过
N
N
N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的
N
N
N元。于是,他把每件物品规定了一个重要度,分为
5
5
5等:用整数
1
−
5
1−5
1−5表示,第
5
5
5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过
N
N
N元(可以等于
N
N
N元)的前提下,使每件物品的价格与重要度的乘积的总和最大.
设第
j
j
j件物品的价格为
v
[
j
]
v[j]
v[j],重要度为
w
[
j
]
w[j]
w[j],共选中了
k
k
k件物品,编号依次为
j
1
,
j
2
,
…
,
j
k
j_1,j_2,…,j_k
j1,j2,…,jk ,则所求的总和为:
v
[
j
1
]
×
w
[
j
1
]
+
v
[
j
2
]
×
w
[
j
2
]
…
v
[
j
k
]
×
w
[
j
k
]
v[j_1]×w[j_1]+v[j_2]×w[j_2]…v[j_k]×w[j_k]
v[j1]×w[j1]+v[j2]×w[j2]…v[jk]×w[jk]。
请你帮助金明设计一个满足要求的购物单。
解题思路
这题其实就是一个简单的01背包,定义一个数组, f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i个物品在容量为 j j j时可以获得的最大价值,由此可得状态转移方程: f [ j ] = m a x ( f [ j ] , f [ j − a [ i ] ] + a [ i ] × b [ i ] ) f[j]=max(f[j],f[j-a[i]]+a[i]×b[i]) f[j]=max(f[j],f[j−a[i]]+a[i]×b[i])
样例
输入
1000 5
800 2
400 5
300 5
400 3
200 2
输出
3900
代码
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int f[1000005],a[105],b[105],t,n;
int main(){
cin>>t>>n;
for(int i=1;i<=n;i++)
cin>>a[i]>>b[i];
for(int i=1;i<=n;i++){
for(int j=t;j>=a[i];j--){
f[j]=max(f[j],f[j-a[i]]+a[i]*b[i]);
}
}
cout<<f[t];
return 0;
}