洛谷P1060 开心的金明

题目描述

原题链接
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 N N N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的 N N N元。于是,他把每件物品规定了一个重要度,分为 5 5 5等:用整数 1 − 5 1−5 15表示,第 5 5 5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过 N N N元(可以等于 N N N元)的前提下,使每件物品的价格与重要度的乘积的总和最大.
设第 j j j件物品的价格为 v [ j ] v[j] v[j],重要度为 w [ j ] w[j] w[j],共选中了 k k k件物品,编号依次为 j 1 , j 2 , … , j k j_1,j_2,…,j_k j1,j2,,jk ,则所求的总和为:
v [ j 1 ] × w [ j 1 ] + v [ j 2 ] × w [ j 2 ] … v [ j k ] × w [ j k ] v[j_1]×w[j_1]+v[j_2]×w[j_2]…v[j_k]×w[j_k] v[j1]×w[j1]+v[j2]×w[j2]v[jk]×w[jk]
请你帮助金明设计一个满足要求的购物单。

解题思路

这题其实就是一个简单的01背包,定义一个数组, f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i个物品在容量为 j j j时可以获得的最大价值,由此可得状态转移方程: f [ j ] = m a x ( f [ j ] , f [ j − a [ i ] ] + a [ i ] × b [ i ] ) f[j]=max(f[j],f[j-a[i]]+a[i]×b[i]) f[j]=max(f[j],f[ja[i]]+a[i]×b[i])

样例

输入

1000 5
800 2
400 5
300 5
400 3
200 2

输出

3900

代码

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int f[1000005],a[105],b[105],t,n;
int main(){
	cin>>t>>n;
	for(int i=1;i<=n;i++)
		cin>>a[i]>>b[i];
	for(int i=1;i<=n;i++){
		for(int j=t;j>=a[i];j--){
				f[j]=max(f[j],f[j-a[i]]+a[i]*b[i]);
		}
	}
	cout<<f[t];
	return 0;
}

然后你就水了一道题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值