题目大意
给出 n n n个数 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an和 n n n个数 b 1 , b 2 , . . . b n b_1,b_2,...b_n b1,b2,...bn,有 m m m个回合,每个回合可以选取一个数 a i a_i ai,但是其他的 a j a_j aj就会减去一个 b j b_j bj,求可以选得的数的总和最大为多少。
解题思路
通过题目,我们不难看出,对于两个数
a
i
a_i
ai和
a
j
a_j
aj,如果我们想取得的和最大,那么我们就得先把
b
b
b值较大的数取了,这样较大的
b
b
b不会减,较小的
b
b
b只会减1次,因此,我们需要先对
b
b
b数组按从大到小的顺序进行排序,尽量先把
b
b
b值较大的减去。
现在有了删除的顺序,但因为只有
m
m
m个回合,所以我们要尽量选择大的数进行选取,那么我们就设
f
i
,
j
f_{i,j}
fi,j为前
i
i
i个数中选
j
j
j个所取得的最大值,对于枚举到的每个
a
i
a_i
ai,若是不选则
f
i
,
j
f_{i,j}
fi,j不变,若是选,则
f
i
,
j
f_{i,j}
fi,j加上
a
i
a_i
ai减去之前选了的个数(每选一个数其他的
a
i
a_i
ai都要减去其对应的
b
i
b_i
bi)。那么就可以推出:
f
i
,
j
=
m
a
x
(
f
i
−
1
,
j
,
f
i
−
1
,
j
−
1
+
a
i
−
b
i
∗
(
j
−
1
)
)
f_{i,j}=max(f_{i-1,j},f_{i-1,j-1}+a_i-b_i*(j-1))
fi,j=max(fi−1,j,fi−1,j−1+ai−bi∗(j−1))
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
struct ap{
int a,b;
}a[2005];
int n,m,f[2005][2005];
bool cmp(ap a,ap b){
return a.b>b.b;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>a[i].a;
for(int i=1;i<=n;i++)
cin>>a[i].b;
sort(a+1,a+n+1,cmp);
memset(f,-0x5f,sizeof(f));//赋较小初值
f[1][1]=a[1].a;//第一个数只选一个时就是第一个数
for(int i=2;i<=n;i++)
f[i][1]=max(f[i-1][1],a[i].a);//所有的数只选一个就是最大的a[i]
f[0][0]=0;
for(int i=1;i<=n;i++)
{
for(int j=2;j<=min(i,m);j++)
f[i][j]=max(f[i-1][j],f[i-1][j-1]+a[i].a-a[i].b*(j-1));//状态转移方程
}
cout<<f[n][m];
return 0;
}