题解一:
新数组存储:另外用一个数组存储移动后的结果,再复制回原数组。
class Solution {
public void rotate(int[] nums, int k) {
int[] result = new int[nums.length];
for (int i = 0; i < nums.length; i++) {
result[(i + k) % nums.length] = nums[i];
}
System.arraycopy(result, 0, nums, 0, nums.length);
}
}
题解二:
原数组移动:在原数组上直接将nums[i]移动到nums[i+k],需要临时存储被覆盖的值nums[i+k],被覆盖的值则继续向后移动覆盖nums[i+2k],循环直到回到第一个开始移动的值。,这个过程可能有若干元素没有被移动,因此需要从nums[i+1]开始重复这个过程。如何判断所有的值都被移动过一次呢,另外用一个count计数,每次移动都+1,直到等于数组长度。这个解法效率较低并且较难理解,不推荐。
class Solution {
public void rotate(int[] nums, int k) {
int n = nums.length;
k = k % n;
int count = 0;
for (int i = 0; count < n; i++) {
for (int pre = nums[i], next, index = i; ; ) {
next = (i + k) % n;
int temp = nums[next];
nums[next] = pre;
pre = temp;
count++;
i = (i + k) % n;
if (i == index) break;
}
}
}
}
题解三:
数组翻转:将整个数组进行反转,再以下标[0,k-1],[k,nums.length-1]左右两段分别进行翻转就得到最终结果,很巧妙的解法。
class Solution {
public void reserve(int[] a, int begin, int end) {
for (; begin < end; begin++, end--) {
int temp = a[begin];
a[begin] = a[end];
a[end] = temp;
}
}
public void rotate(int[] nums, int k) {
k = k % nums.length;
reserve(nums, 0, nums.length-1);
reserve(nums, 0, k - 1);
reserve(nums, k, nums.length-1);
}
}