LeetCode: 120. Triangle

120. Triangle

题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
    [2],
    [3,4],
    [6,5,7],
    [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

题解

  • 题意分析:本题是一道动态规划类型的题目,给出一个三角形,每个位置有一个权值,求其一条经过每层的权值最小的路径的权值是多少。
  • 动态规划
    • 思路 1
      • 寻找一条由顶向下的路径,使用path[i][j]表示从顶点(0,0)到结点(i,j)的路径权重
        • 主要考虑当前结点(i,j)可以选择的路径
          • 考虑从(i-1, j)到达该节点的路径 – (j < triangle[i-1].size())
          • 考虑从(i-1, j-1)到达该节点的路径 – (j - 1 >= 0)
    • 思路 2
      • 当然本题也可以考虑从底向顶寻找一条路径,同样使用使用path[i][j]表示从底部到结点(i,j)的路径权重
        • 初始最底部结点 path[i][j] = triangle[i][j]
        • 对于其余非底部结点,主要考虑当前结点(i,j)可以选择的路径
          • 考虑从(i+1, j)到达该节点的路径
          • 考虑从(i+1, j+1)到达该节点的路径
          • path[i][j] = min(path[i+1][j+1], path[i+1][j]) + triangle[i][j];
    • 时间复杂度 – O ( n 2 ) O(n^2) O(n2)
    • 空间复杂度 – O ( n 2 ) O(n^2) O(n2)

实现代码

  • 思路 1

    class Solution {
    public:
        int minimumTotal(vector<vector<int>>& triangle) {
    
            int path[triangle.size()][triangle[triangle.size()-1].size()];
    
            path[0][0] = triangle[0][0];
    
            for(int i = 1; i < triangle.size(); ++i) {
                for(int j = 0; j < triangle[i].size(); ++j) {
                    path[i][j] = INT_MAX;
                    if(j - 1 >= 0) path[i][j] = path[i-1][j-1];	
                    if(j < triangle[i-1].size())
                        path[i][j] = min(path[i-1][j], path[i][j]); 
                    path[i][j] += triangle[i][j];
                    // cout << path[i][j] << " ";
                }
                // cout << endl;
            }
    
            int min = INT_MAX;
            for(int i = 0; i < triangle[triangle.size()-1].size(); ++i)
                if(path[triangle.size()-1][i] < min)
                    min = path[triangle.size()-1][i];
    
            return min;
        }
    };
    
  • 思路 2

    class Solution {
    public:
        int minimumTotal(vector<vector<int>>& triangle) {
    
            int path[triangle.size()][triangle[triangle.size()-1].size()];
    
            path[0][0] = triangle[0][0];
    
            for(int j = triangle[triangle.size() - 1].size() - 1; j >= 0; --j) {
                path[triangle.size() - 1][j] = triangle[triangle.size() - 1][j];
            }
    
            for(int i = triangle.size() - 2; i >= 0; --i) {
                for(int j = triangle[i].size() - 1; j >= 0; --j) {
                    path[i][j] = min(path[i+1][j+1], path[i+1][j]) + triangle[i][j];
                    // cout << path[i][j] << " ";
                }
                // cout << endl;
            }
            return path[0][0];
        }
    };
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值