力扣1510——石子游戏 IV(博弈+动态规划)

题目(困难)

Alice 和 Bob 两个人轮流玩一个游戏,Alice 先手。

一开始,有 n 个石子堆在一起。每个人轮流操作,正在操作的玩家可以从石子堆里拿走 任意 非零 平方数 个石子。

如果石子堆里没有石子了,则无法操作的玩家输掉游戏。

给你正整数 n ,且已知两个人都采取最优策略。如果 Alice 会赢得比赛,那么返回 True ,否则返回 False 。

示例 1:

输入:n = 1
输出:true
解释:Alice 拿走 1 个石子并赢得胜利,因为 Bob 无法进行任何操作。
示例 2:

输入:n = 2
输出:false
解释:Alice 只能拿走 1 个石子,然后 Bob 拿走最后一个石子并赢得胜利(2 -> 1 -> 0)。
示例 3:

输入:n = 4
输出:true
解释:n 已经是一个平方数,Alice 可以一次全拿掉 4 个石子并赢得胜利(4 -> 0)。
示例 4:

输入:n = 7
输出:false
解释:当 Bob 采取最优策略时,Alice 无法赢得比赛。
如果 Alice 一开始拿走 4 个石子, Bob 会拿走 1 个石子,然后 Alice 只能拿走 1 个石子,Bob 拿走最后一个石子并赢得胜利(7 -> 3 -> 2 -> 1 -> 0)。
如果 Alice 一开始拿走 1 个石子, Bob 会拿走 4 个石子,然后 Alice 只能拿走 1 个石子,Bob 拿走最后一个石子并赢得胜利(7 -> 6 -> 2 -> 1 -> 0)。
示例 5:

输入:n = 17
输出:false
解释:如果 Bob 采取最优策略,Alice 无法赢得胜利。

提示:

1 <= n <= 10^5

解题思路

如果一个状态是必输的状态,那么如果我拿走平方数个石子能让对方到达这个必输状态,那我当前的状态就是必赢;
首先初始化,将所有平方数的状态置为必赢,其他为0,更新时跳过这些状态;
在一个新的状态下,遍历可移走的平方数,如果移走后是必输状态,当前状态就是必赢,且就是最优解;
转移方程为 d p [ i ] = ! d p [ i − j 2 ] dp[i] = !dp[i - j^2] dp[i]=!dp[ij2] (只有 d p [ i − j 2 ] = = 0 dp[i - j^2] == 0 dp[ij2]==0才更新);

对于拿走后必赢的策略,不做更新,因为选了等于自己输,要找最优的能让自己赢的。

代码

class Solution {
public:
    bool winnerSquareGame(int n) {
        vector<int> dp(n + 1, 0);
        for(int i = 1; i <= sqrt(n); i++) dp[i*i] = 1;
        for(int i = 1; i <= n; i++) {
            if(dp[i] == 1) continue;
            for(int j = 1; j*j < i; j++) {
                if(dp[i - j*j] == 0) {
                    dp[i] = 1;
                    break;
                }
            }            
        }
        return dp[n];       
    }
};
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值