如何训练LLMs像DeepSeek-R1“思考”

DeepSeek-R1(Paper Review: DeepSeek-R1——强化学习驱动的大语言模型推理能力提升)作为近期崭露头角的LLM,其在数学、编程、推理等多个领域展现出了强大的性能,特别是其“思考”能力,引起了业界的广泛关注。本文将深入探讨如何训练LLMs,使它们能够像DeepSeek-R1一样“思考”,从基础原理到具体训练方法,为AI研究者提供全面的指导。

一、LLM训练的基础原理

LLM的训练通常包括预训练、监督微调(SFT)和强化学习(RL)三个关键阶段。

  1. 预训练(Pretrain)

    此阶段,模型学习海量通用知识,奠定基础能力。通过大规模语料库的训练,LLM能够捕捉到语言的统计规律,为后续任务打下坚实的基础。

  2. 监督微调(SFT)

    在预训练的基础上,通过指令和响应对数据集,增强模型对指令的理解和执行能力。SFT阶段(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值