DeepSeek-R1(Paper Review: DeepSeek-R1——强化学习驱动的大语言模型推理能力提升)作为近期崭露头角的LLM,其在数学、编程、推理等多个领域展现出了强大的性能,特别是其“思考”能力,引起了业界的广泛关注。本文将深入探讨如何训练LLMs,使它们能够像DeepSeek-R1一样“思考”,从基础原理到具体训练方法,为AI研究者提供全面的指导。
一、LLM训练的基础原理
LLM的训练通常包括预训练、监督微调(SFT)和强化学习(RL)三个关键阶段。
- 预训练(Pretrain)
此阶段,模型学习海量通用知识,奠定基础能力。通过大规模语料库的训练,LLM能够捕捉到语言的统计规律,为后续任务打下坚实的基础。
- 监督微调(SFT)
在预训练的基础上,通过指令和响应对数据集,增强模型对指令的理解和执行能力。SFT阶段(