
RAG
文章平均质量分 92
大模型之路
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
构建AI工作流与智能体的信任:持续评估与优化指南
本文通过电影推荐智能体的案例,展示了一套从“指标定义-数据生成-自动化评估-优化行动”的完整持续评估框架。这套框架的核心价值在于,它将AI应用的开发从“一次性测试”转变为“持续监控与优化”的闭环,让AI应用在长期运行中始终保持高质量、高可靠性。原创 2025-09-03 08:15:00 · 757 阅读 · 0 评论 -
构建检索增强生成(RAG):从基础版到多智能体系统的演进之路
RAG技术的下一个前沿,不在于开发更复杂的算法,而在于实现“知识与智能体的优雅协同”。这需要企业投入真实的领域 expertise,并坚持对知识库的持续精修。在这个新领域,真正的成功者不会是那些搭建出最复杂AI架构的人,而是那些能为AI构建“优雅、真实数字环境”的人。原创 2025-09-01 08:15:00 · 805 阅读 · 0 评论 -
基于智能体增强生成式检索(Agentic RAG)的流程知识提取技术研究
流程知识提取的终极目标,是为工业场景提供“可信赖、可解释”的结构化流程。Agentic RAG架构通过模块化智能体,实现了提取过程的透明化(如“步骤1来自RAG智能体,基于手册P12”)与灵活性(适配不同类型技术文档),但在高风险工业场景(如航空发动机维护)中,仍需“人机协同”——因LLM与智能体的决策存在非确定性,人类需作为最终审核者,确保流程的安全性与准确性。原创 2025-08-29 08:15:00 · 996 阅读 · 0 评论 -
LlamaIndex新手指南(2025):从0到生产环境,构建RAG应用的完整指南
通过从基础入门、开发环境搭建、数据处理加载、索引构建、查询生成到生产环境部署的完整流程,我们详细介绍了如何利用LlamaIndex构建从0到生产环境的RAG应用。实际应用中,开发者可根据具体业务需求和场景,灵活运用LlamaIndex功能工具,不断优化应用性能和用户体验,充分发挥RAG技术提升LLM应用能力的潜力。无论是企业内部知识管理、客户服务,还是智能问答系统、智能写作助手等领域,基于LlamaIndex的RAG应用都有广阔应用前景和发展空间。原创 2025-08-25 08:15:00 · 782 阅读 · 0 评论 -
深入探索高级RAG(检索增强生成)技术
RAG的世界在不断发展,新的技术和方法层出不穷。通过探索我们在本文中讨论的高级技术——从复杂的混合检索和重排序到利用专用向量数据库的力量——你可以构建比以往更准确、更高效、更强大的RAG系统。原创 2025-08-24 08:15:00 · 1436 阅读 · 0 评论 -
RAG 实用指南:开发者必备的 25 种文本分块技巧
分块是 RAG 系统的隐形基础设施,它不耀眼却至关重要。通过本文的 25 种策略,让你的分块从"随意切割"升级为"智能拆分",让 LLM 在精准上下文的加持下,输出真正可靠的答案。原创 2025-08-18 08:15:00 · 727 阅读 · 0 评论 -
7 款会“思考”再作答的 RAG 智能代理:重新定义 AI 交互逻辑
RAG 技术的演进史,本质上是 AI 从“信息检索者”向“决策辅助者”的进化史。这 7 种智能代理的共同特点,是突破了“输入-输出”的简单逻辑,引入了人类解决问题的核心要素——规划、推理、验证、记忆。原创 2025-08-05 08:15:00 · 674 阅读 · 0 评论 -
测试不同的RAG技术以找到最佳方案
对广泛的RAG技术的探索表明,每种技术都有其优缺点。朴素RAG是一个很好的起点,因为它简单且设置快速,非常适合快速项目。另一方面,像HyDE、图RAG、递归检索等高级方法在需要更准确和详细的答案时表现出色,特别是对于复杂或特定的任务。通过测试这些方法,人们可以找出最适合自己需求的方法,无论优先考虑的是速度、精度还是处理棘手问题的能力。原创 2025-07-31 08:15:00 · 823 阅读 · 0 评论 -
一小时内构建基于Gemma与Bright Data的生产级RAG应用
RAG技术的价值不仅在于提升AI系统的可靠性,更在于降低了智能应用的开发门槛。现在,即便是中小企业或个人开发者,也能构建出媲美科技巨头的专业AI工具,应用场景涵盖客户支持、市场分析、学术研究等多个领域。原创 2025-07-29 08:15:00 · 809 阅读 · 0 评论 -
Dynamic Chunking(H-Net):告别分词器的AI文本处理革新
H-Net与动态分块技术的出现,不是终点而是新起点。它让我们看到,当AI不再被人工规则限制,其理解语言的潜力将如何释放。在这条通往真正智能的道路上,每一次对固有假设的挑战,都在推动人工智能向人类的认知方式靠近——或许有一天,机器处理文本时,也能像我们那样,在字符的流动中自然把握意义的脉络。原创 2025-07-20 08:15:00 · 862 阅读 · 0 评论 -
长上下文在大语言模型检索增强生成(RAG)中的作用:全面综述
长上下文能力正在重塑RAG系统的边界,从“碎片化信息拼接”走向“全量知识整合”。它解决了传统RAG的核心痛点,使LLMs能够在复杂任务中发挥更大价值,但同时也带来了注意力稀释、效率下降等新挑战。通过提示工程优化、检索策略创新与模型技术突破,这些挑战正逐步得到缓解。原创 2025-07-15 08:15:00 · 2123 阅读 · 0 评论 -
智能分块助力更智能的RAG:2025年的方法与工具
数据分块是2025年高效RAG系统的支柱,使LLMs能够高效地处理和检索信息。LangChain和LlamaIndex等工具提供了一系列分块策略,从简单的固定大小拆分到先进的语义和智能体方法。原创 2025-07-13 08:15:00 · 929 阅读 · 0 评论 -
基准测试检索增强生成(RAG)管道:指标、挑战与洞见
RAG系统为企业提供了一种强大的工具,能够生成准确、有依据的实时答案,但要确保其性能,必须进行全面、系统的评估。通过明确评估的部分和指标,正视评估过程中面临的挑战,并从中获取有价值的洞见,开发者可以不断优化RAG管道,提高系统的可靠性、准确性和实用性。原创 2025-07-12 08:15:00 · 1004 阅读 · 0 评论 -
如何评估并找到适合RAG的最佳嵌入模型——基于Ground Truth的方法
总之,评估嵌入模型时,需综合考虑准确率、延迟、模型大小以及实际业务场景的特点,通过Ground Truth方法科学对比,才能选出最适合特定RAG系统的嵌入模型,为后续生成器的高效工作奠定基础。原创 2025-07-10 08:15:00 · 832 阅读 · 0 评论 -
检索增强生成(RAG)的设计原理与架构解析
检索增强生成(RAG)通过将外部知识检索与内部模型推理解耦,开创了"可扩展、可更新、可验证"的AI新范式。从企业知识管理到智能客服,从科研辅助到实时问答,RAG正在重塑各类知识密集型应用。随着Graph RAG、Agentic RAG等新技术的发展,RAG系统正从简单的"检索-生成"工具,进化为具备自主决策、多模态理解、复杂推理能力的智能助手。原创 2025-07-09 09:20:11 · 904 阅读 · 0 评论 -
智能检索+图技术:Neo4j、Kùzu 与代理式 RAG 的崛起
从AlphaGo的模式识别到GPT的语言生成,AI的发展始终围绕着"如何让机器更好地理解世界"。Graph RAG与智能代理的出现,标志着AI正从"统计学习"向"知识推理"迈进——通过将显式知识图谱与隐式语言模型结合,我们正在构建既能"知其然"又能"知其所以然"的智能系统。原创 2025-07-06 08:15:00 · 1977 阅读 · 0 评论 -
从RAG到Agentic RAG:构建更智能的检索增强系统
Agentic RAG的出现标志着检索增强技术从"被动工具"向"主动智能体"的关键跨越。它不再仅是LLM的"外挂知识库",而是具备认知、判断和优化能力的智能系统——如同一位经验丰富的研究员,能根据问题特性动态调整检索策略,像人类一样在"思考-查询-反思"的循环中逼近正确答案。原创 2025-07-04 08:15:00 · 1282 阅读 · 0 评论 -
面向RAG与LLM的分块策略权威指南:从基础原理到高级实践
从固定大小分块的简单性,到语义分块的细微差别,再到层次结构的系统性,分块技术塑造了知识呈现给模型的方式。选择的策略将决定系统是精确检索还是泛泛而谈,是生成有根有据的见解还是自信的幻觉。原创 2025-06-27 08:15:00 · 2067 阅读 · 0 评论 -
GraphRAG系统:利用LangChain、Gemini和Neo4j构建智能文档检索与生成解决方案
GraphRAG系统:利用LangChain、Gemini和Neo4j构建智能文档检索与生成解决方案原创 2025-06-19 08:15:00 · 944 阅读 · 0 评论 -
RAG:2025年检索增强生成前沿技术完全指南
从实验室走向企业级应用,RAG正在重新定义AI系统的构建范式。它通过“检索增强生成”的核心理念,既保留了大语言模型的创造性,又赋予其可追溯、可验证的可信属性。到2025年,随着七大前沿技术的成熟落地,RAG将不再局限于工具层面的优化,而是成为驱动各行业智能化转型的核心引擎。原创 2025-06-12 08:15:00 · 2701 阅读 · 0 评论 -
一文读懂 Embeddings 与 RAG 架构:分词、向量数据库到生产级系统设计
嵌入与RAG技术的出现,标志着AI系统从“模式匹配”迈向“语义理解”的新纪元。无论是开发企业知识库问答系统,还是构建下一代搜索引擎,掌握从文本到向量、从检索到生成的完整链路,是实现智能系统的关键。通过本文所述的理论基础、技术选型与实践经验,读者可逐步搭建健壮、高效的RAG系统,并在不断迭代中适应AI领域的快速变革。原创 2025-06-08 08:15:00 · 1054 阅读 · 0 评论 -
结合LangGraph、DeepSeek-R1和Qdrant 的混合 RAG 技术实践
本文提出的基于Qdrant miniCOIL、LangGraph和SambaNova DeepSeek-R1的混合RAG方案,通过融合稀疏检索的精准性与稠密检索的语义理解能力,为企业级智能问答提供了高效解决方案。miniCOIL的轻量化设计使其在保持语义增强的同时避免了传统神经检索的存储开销,而LangGraph的可视化流程编排降低了RAG系统的开发门槛。原创 2025-06-05 08:15:00 · 1005 阅读 · 0 评论 -
RAG中基于图的重排序:利用图神经网络革新信息检索(含代码)
基于图的重排序技术通过将检索问题转化为图结构中的关系推理,突破了传统模型“孤立评分”的局限,为信息检索带来了三大核心价值:全局语义建模能力、结构化知识注入能力、动态关联推理能力。原创 2025-06-02 08:15:00 · 809 阅读 · 0 评论 -
Agentic RAG 的技术演进详解
Agentic RAG的出现,不仅是技术的革新,更是人机关系的重新定义。它让机器从“按指令行事的工具”进化为“理解需求、自主决策、持续进化的伙伴”,人类得以从重复性知识工作中解放,专注于创造力、战略思维和情感连接等机器难以替代的领域。原创 2025-05-31 08:15:00 · 1052 阅读 · 0 评论 -
基于Gemini与Qdrant构建生产级RAG管道:设计指南与代码实践
RAG技术的价值不仅在于解决LLM的固有缺陷,更在于构建可进化的智能系统——通过持续优化数据管道和提示策略,企业能够以更低成本适应业务需求的快速变化。随着Gemini等多模态模型的迭代,RAG将在更多垂直领域(如智能制造、智慧医疗)释放更大潜力。原创 2025-05-30 08:15:00 · 905 阅读 · 0 评论 -
RAG(检索增强生成):提升大语言模型性能的终极指南
RAG的本质,是将检索(Retrieval)与生成(Generation)相结合,让LLMs在回答问题时不再依赖“记忆”,而是通过实时检索外部知识库获取最新信息。原创 2025-05-27 08:15:00 · 993 阅读 · 0 评论 -
2025年GitHub上十大RAG框架深度解析:从技术原理到实战应用
RAG(Retrieval-Augmented Generation)技术通过动态检索外部知识来增强大型语言模型(LLMs)的生成能力,解决了传统LLMs知识截止和“幻觉”风险的问题。其核心流程包括检索、融合和生成,显著提升了生成内容的准确性和可解释性。RAG技术在金融、医疗、电商等领域展现出巨大实用价值,成为构建下一代智能应用的核心技术底座。2025年GitHub上十大RAG框架包括Haystack、RAGFlow、txtai、STORM、LLM-App、Cognita、R2R、Neurite、Flash原创 2025-05-22 08:15:00 · 1077 阅读 · 0 评论 -
RAG架构综述:探寻最适配RAG方案
RAG技术通过整合外部知识源检索与模型生成能力,使语言模型能够基于真实世界的信息生成更准确、可靠的回答。如今,RAG技术不断演进,衍生出了多种各具特色的架构类型,每种都针对特定场景和需求进行了优化。原创 2025-05-19 08:15:00 · 849 阅读 · 0 评论 -
解析LangGraph中的状态、状态图和工作流
状态、状态图和工作流是LangGraph的核心概念。状态作为信息的载体,在工作流执行过程中不断传递和更新;状态图为工作流提供了结构化的设计蓝图,定义了节点、数据流向和状态更新方式;工作流则是状态图的实际运行实例,将状态在状态图规定的路径上推进,实现复杂的AI任务。原创 2025-05-18 08:15:00 · 2409 阅读 · 0 评论 -
利用大语言模型在Neo4j中构建用于图RAG应用的知识图谱
基于图的RAG与大语言模型的结合不仅仅是一种技术趋势,更是可解释的智能系统的未来发展方向。通过使用大语言模型智能体从原始文本构建知识图谱,并利用Neo4j的强大功能,我们能够从非结构化数据中获得更深入、结构化的见解。原创 2025-05-17 08:15:00 · 956 阅读 · 0 评论 -
深入剖析 GraphRAG 的工作原理:步步拆解
GraphRAG本质上是对检索增强生成技术的强化,它借助图结构来优化信息检索和生成过程。与传统RAG不同,GraphRAG能够更好地捕捉数据之间的关系,从而在处理复杂查询时表现出更高的效率和准确性。原创 2025-05-14 08:15:00 · 661 阅读 · 0 评论 -
探索RAG数据分块策略:工具对比与实践指南(含code)
本文探讨了检索增强生成(RAG)应用中的数据分块策略,重点介绍了LangChain、LlamaIndex和Preprocess三种主流工具的功能与特点。数据分块在RAG中至关重要,合理分块能提升检索效率和生成内容的相关性。LlamaIndex提供固定块大小、语义分块和主题节点解析等策略;LangChain则包括字符文本分割、递归字符文本分割和语义分块;Preprocess则擅长处理复杂文档,提供高质量分块。文章还分析了不同工具在PDF、PPT和Word文档处理中的表现,并建议根据数据类型、应用场景和资源限制原创 2025-05-13 08:15:00 · 1702 阅读 · 0 评论 -
揭开RAG评估的神秘面纱,让 RAG 评估不再困难(含代码)
检索增强生成(Retrieval-Augmented Generation,RAG)技术近年来备受瞩目。RAG系统结合了信息检索和语言生成的优势,通过从大量文本中检索相关信息来辅助生成高质量的文本内容,广泛应用于问答系统、文档生成等场景。然而,对RAG系统进行准确评估却面临诸多挑战,传统评估方法存在局限性,使得RAG评估犹如一个“黑箱”,难以清晰洞察系统内部的运行机制和性能表现。如何打破这个黑箱,成为当前RAG技术发展中的关键问题。原创 2025-05-11 08:15:00 · 987 阅读 · 0 评论 -
RAG 中的语义分块:实现更优的上下文检索
语义分块是RAG技术中不可或缺的关键环节。它通过优化文档的分割方式,提升了上下文检索的效果,进而显著提高了RAG系统的性能。随着人工智能技术的不断发展,语义分块技术也将不断演进和完善,为更多领域的应用提供有力支持。原创 2025-05-07 08:15:00 · 1972 阅读 · 0 评论 -
ReaRAG:教 AI 思考、搜索和自我纠正以获得事实准确答案(含git实现)
ReaRAG作为一种增强事实性的推理模型,通过迭代规划推理步骤并利用外部知识确保推理链的正确性,在多跳问答任务中取得了显著的性能提升。它有效整合了推理模型与外部知识,增强了事实准确性,同时减少了基于强化学习的LRMs中过度思考的问题。原创 2025-05-06 10:50:57 · 1171 阅读 · 0 评论 -
Agentic RAG:构建能理解、决策和行动的人工智能
Agentic RAG系统的出现,标志着人工智能在理解用户需求、做出智能决策和执行实际行动方面迈出了重要一步。它不仅提升了传统RAG系统的智能化水平,还为众多应用场景带来了更高效、更智能的解决方案。随着技术的不断发展,Agentic RAG有望在更多领域得到应用和拓展,如智能办公、智能医疗、智能教育等。原创 2025-05-06 10:49:42 · 1091 阅读 · 0 评论 -
综述:从零构建RAG系统全面指南(含代码)
尽管大语言模型具备出色的推理能力和广泛的通用知识,但它们在检索精确信息、获取最新数据或提供可验证的回答时常常遇到困难。检索增强生成(Retrieval-Augmented Generation,RAG)应运而生,这一创新性方法通过将大语言模型与外部知识源相结合,有效提升了其性能。本文将深入探讨RAG的概念、重要性,并使用Python和流行的开源库从零开始构建一个完整的RAG系统。原创 2025-04-30 08:15:00 · 710 阅读 · 0 评论 -
突破RAG局限:探秘RARE如何重塑领域大模型新范式
传统检索增强生成(RAG)技术虽然能缓解知识缺失,却始终未能突破推理能力的天花板。北京大学与上海人工智能实验室联合研发的RARE(检索增强推理建模)技术,正以革命性的思路重构领域智能的构建范式。原创 2025-04-21 08:15:00 · 885 阅读 · 0 评论 -
RAG vs. CAG vs. Fine-Tuning:如何为你的大语言模型选择最合适的“脑力升级”?
每个使用过LLM的人都会发现一个残酷的现实:这些看似全能的模型,有时会给出过时的信息,偶尔会“自信满满”地编造事实(即“幻觉”问题),甚至对某些专业领域的问题表现得一窍不通。面对这些局限,人工智能领域提出了三种主流解决方案——和。它们就像给LLM安装不同的“外接大脑”,但各自的运作逻辑、适用场景和成本代价却大相径庭。本文将深入探讨这三种技术的本质差异,并通过实际案例揭示:在具体业务场景中,如何像选择汽车配件一样,为你的AI引擎精准匹配最合适的“升级模块”。原创 2025-04-19 08:15:00 · 812 阅读 · 0 评论 -
AI 记忆不等于 RAG:对话式 AI 为何需要超越检索增强
检索增强生成(RAG)已成为构建智能系统的标配技术。它通过 “检索 - 融合 - 生成” 的三段式流程,将外部知识库与大语言模型(LLM)结合,显著提升了 AI 回答的准确性和时效性。然而,当我们尝试构建具备类人交互能力的对话代理时,RAG 的局限性逐渐显现 —— 它本质上仍是信息检索工具,而非真正的记忆系统。理解这种差异,是突破当前 AI 交互瓶颈的关键。原创 2025-04-18 08:15:00 · 1779 阅读 · 0 评论