
RAG
文章平均质量分 93
大模型之路
这个作者很懒,什么都没留下…
展开
-
综述:从零构建RAG系统全面指南(含代码)
尽管大语言模型具备出色的推理能力和广泛的通用知识,但它们在检索精确信息、获取最新数据或提供可验证的回答时常常遇到困难。检索增强生成(Retrieval-Augmented Generation,RAG)应运而生,这一创新性方法通过将大语言模型与外部知识源相结合,有效提升了其性能。本文将深入探讨RAG的概念、重要性,并使用Python和流行的开源库从零开始构建一个完整的RAG系统。原创 2025-04-30 08:15:00 · 478 阅读 · 0 评论 -
突破RAG局限:探秘RARE如何重塑领域大模型新范式
传统检索增强生成(RAG)技术虽然能缓解知识缺失,却始终未能突破推理能力的天花板。北京大学与上海人工智能实验室联合研发的RARE(检索增强推理建模)技术,正以革命性的思路重构领域智能的构建范式。原创 2025-04-21 08:15:00 · 719 阅读 · 0 评论 -
RAG vs. CAG vs. Fine-Tuning:如何为你的大语言模型选择最合适的“脑力升级”?
每个使用过LLM的人都会发现一个残酷的现实:这些看似全能的模型,有时会给出过时的信息,偶尔会“自信满满”地编造事实(即“幻觉”问题),甚至对某些专业领域的问题表现得一窍不通。面对这些局限,人工智能领域提出了三种主流解决方案——和。它们就像给LLM安装不同的“外接大脑”,但各自的运作逻辑、适用场景和成本代价却大相径庭。本文将深入探讨这三种技术的本质差异,并通过实际案例揭示:在具体业务场景中,如何像选择汽车配件一样,为你的AI引擎精准匹配最合适的“升级模块”。原创 2025-04-19 08:15:00 · 690 阅读 · 0 评论 -
AI 记忆不等于 RAG:对话式 AI 为何需要超越检索增强
检索增强生成(RAG)已成为构建智能系统的标配技术。它通过 “检索 - 融合 - 生成” 的三段式流程,将外部知识库与大语言模型(LLM)结合,显著提升了 AI 回答的准确性和时效性。然而,当我们尝试构建具备类人交互能力的对话代理时,RAG 的局限性逐渐显现 —— 它本质上仍是信息检索工具,而非真正的记忆系统。理解这种差异,是突破当前 AI 交互瓶颈的关键。原创 2025-04-18 08:15:00 · 1623 阅读 · 0 评论 -
AI 与非结构化数据:简单 RAG 的局限及生产级解决方案全解析
非结构化数据涵盖了电子邮件、PDF 文件、会议记录等多种形式,它们充斥在各个角落,却由于缺乏固定的格式,给传统的数据处理工具带来了巨大的挑战。而人工智能(AI)的出现,尤其是大型语言模型(LLMs),为解决非结构化数据的难题带来了新的希望。但在实际应用中,简单的检索增强生成(RAG)方法却存在诸多不足,无法满足复杂的生产级场景需求。本文将深入探讨这些问题,并详细阐述如何构建适用于生产环境的有效解决方案。原创 2025-04-17 08:15:00 · 829 阅读 · 0 评论 -
从杂乱到精准:RAG 问答系统数据集的清洗蜕变之路
RAG 系统结合语言模型和信息检索技术,通过检索相关信息来生成高质量的回答,显著提升了问答系统的性能。然而,要使 RAG 系统发挥最佳效果,高质量的数据集至关重要。原始数据集往往存在各种问题,如数据噪声、冗余和不相关信息等,这就需要有效的清洗方法来优化数据,为 RAG 系统提供坚实的基础。原创 2025-04-14 08:15:00 · 1767 阅读 · 0 评论 -
ReSearch:通过强化学习实现LLM推理与搜索协同的创新框架
ReSearch 框架的核心在于将推理链的概念进行拓展。传统的基于文本的思考方式(如 DeepSeek - R1 中被<think></think>包围的内容)只是其中一部分,搜索查询(被<search></search>包围)和检索结果(被<result></result>包围)也被纳入推理链。在这个框架里,搜索操作不再是孤立的,而是与基于文本的思考相互作用。基于文本的思考会引导何时以及如何进行搜索,而搜索结果又会影响后续的文本思考过程。原创 2025-04-03 08:15:00 · 668 阅读 · 0 评论 -
改进RAG:利用混合搜索与重排序优化检索效果(含代码示例)
在全文搜索中,停用词的处理至关重要。停用词是指那些在文本中频繁出现但对检索意义不大的词汇,如 “a”“the”“and” 等。通过自定义停用词列表,可以根据具体应用场景的需求,灵活地添加或排除特定的词汇。在处理科技文献检索时,一些特定领域的常用词汇可能在其他场景中属于停用词,但在该领域却具有重要意义,此时就需要将这些词汇从停用词列表中排除;反之,在处理特定格式的文本(如代码注释)时,一些特殊的符号或关键字可能需要被添加到停用词列表中,以提高检索的准确性和效率。原创 2025-04-02 08:15:00 · 622 阅读 · 0 评论 -
企业 RAG 准确性提升全流程指南:从数据提取到精准检索
在企业环境中,准确高效地从大量非结构化数据(如 PDF 文件)中检索信息至关重要。基于检索增强生成(RAG)的系统在这方面发挥着重要作用,但提升其准确性是一个复杂且具有挑战性的任务。原创 2025-03-31 08:15:00 · 700 阅读 · 0 评论 -
结合DeepSeek、FAISS与LangChain构建RAG系统
RAG技术是一种结合了检索和生成能力的新型语言模型应用方式。其核心在于,首先使用一个检索器从知识库中获取与查询相关的文档片段,然后基于这些检索到的上下文,利用语言模型(LLM)生成回答。这种方式显著提高了回答的准确性和时效性,因为它能够实时地、基于事实地、动态地生成响应。在构建 RAG 系统时,选择合适的技术工具至关重要。LangChain作为连接检索器和语言模型的桥梁,LangChain 提供了一系列便捷的工具和接口,能轻松整合不同的组件,让开发人员专注于系统逻辑的实现。FAISS。原创 2025-03-24 08:15:00 · 416 阅读 · 0 评论 -
Agentic RAG:检索增强生成技术的新飞跃
检索增强生成(RAG)技术的出现为大语言模型(LLM)的发展带来了新的契机。它借助外部知识源,有效提升了模型输出的准确性和时效性。然而,传统的局限性也逐渐显现,促使研究人员不断探索改进之道。Agentic RAG 应运而生,作为 RAG 技术的新一代范式,它为 AI 系统注入了更强的自主性和智能性,成为当前人工智能领域的研究热点。原创 2025-03-22 08:15:00 · 1018 阅读 · 0 评论 -
基于文档层级架构的RAG系统:提升人工智能检索效率
父节点通常包含从子节点中提取的摘要或关键点。这些摘要在查询处理过程中起到导航辅助的作用,帮助系统快速判断某个节点是否与查询相关,从而提高检索效率。原创 2025-03-16 08:15:00 · 894 阅读 · 0 评论 -
基于DeepSeek构建RAG 系统综合指南(含代码)
在人工智能飞速发展的当下,从海量文档中高效处理、理解和检索信息,成为众多领域的关键需求。检索增强生成(Retrieval-Augmented Generation,RAG)技术应运而生,它代表了 AI 信息处理方式的重大进步。传统语言模型仅依赖预先训练的数据,而 RAG 系统在生成回复前,会动态检索相关信息,就如同为 AI 配备了一个专属 “图书馆”,在回答问题前可随时查阅参考。RAG 系统主要包含检索和生成两大核心能力。原创 2025-02-12 08:15:00 · 2415 阅读 · 0 评论 -
Deepseek-R1与CAG(缓存增强生成)结合提升问答质量(含demo代码)
DeepSeek模型()与CAG技术的结合,为构建高效问答系统提供了全新的思路和方法。通过充分利用DeepSeek的强大语言理解和生成能力,以及CAG技术的缓存增强生成机制,系统能够实现快速、准确的问答服务。这种组合模式不仅提高了系统的效率和准确性,还降低了资源消耗和成本投入。今天我们一起了解一下如何结合Deepseek-R1与CAG(原创 2025-02-09 08:15:00 · 1454 阅读 · 0 评论 -
探索从传统检索增强生成(RAG)到缓存增强生成(CAG)的转变
在人工智能快速发展的当下,大型语言模型(LLMs)已成为众多应用的核心技术。检索增强生成(RAG)和缓存增强生成(CAG)作为提升 LLMs 性能的关键技术,备受关注。这两种技术各自具有独特的优势与局限,深入探究从 RAG 到 CAG 的转变,对于理解人工智能技术的演进、优化应用开发具有重要意义。原创 2025-02-07 13:10:42 · 1371 阅读 · 0 评论 -
利用自适应Prompt Engineering增强 RAG 系统:优化信息检索与处理能力
自适应提示工程作为一种优化RAG模型的新方法,在提高检索准确性、增强生成多样性和优化系统性能方面展现出了巨大的潜力。通过深度理解用户需求、动态调整提示以及高效检索与生成等关键技术,自适应提示工程能够显著提高RAG的性能和用户体验。原创 2025-02-05 08:15:00 · 960 阅读 · 0 评论 -
基于 DeepSeek R1 和 Ollama 开发 RAG 系统(含代码)
今天我们一起聊一下如何借助当下最热的开源推理工具 DeepSeek R1 和轻量级本地 AI 模型运行框架 Ollama,构建功能强大的 RAG 系统。原创 2025-01-28 08:15:00 · 3843 阅读 · 0 评论 -
LLM幻觉(Hallucination)缓解技术综述与展望
LLMs 中的幻觉问题()对其可靠性与实用性构成了严重威胁。幻觉现象表现为模型生成的内容与事实严重不符,在医疗、金融、法律等对准确性要求极高的关键领域,可能引发误导性后果,因此,探寻有效的幻觉缓解技术成为当前人工智能研究的关键任务。原创 2025-01-24 08:15:00 · 1404 阅读 · 0 评论 -
Vertex AI RAG Engine:Google Cloud最新打造的RAG超级引擎(含代码)
Vertex AI RAG Engine是Google Cloud推出的一款专为增强AI应用能力而设计的平台。它此前被称为RAG API,经过不断演进,现已成为一个全面、易于管理的运行时环境,旨在简化检索增强生成(RAG)(RAG综述:探索检索增强生成技术的多样性与代码实践)的工作流程。RAG技术结合了信息检索和生成式AI的能力,通过从大量数据中检索相关信息来增强生成式AI模型的输出,从而提高响应的准确性和相关性。原创 2025-01-23 08:15:00 · 1113 阅读 · 0 评论 -
RAG 系统从 POC 到生产应用:全面解析与实践指南
RAG系统(借助LangGraph、OpenAI和Tavily构建自适应RAG系统(含代码))通过结合大型语言模型(LargeLanguageModel,简称LLM)与检索机制,显著提升了生成内容的准确性和相关性。其核心在于利用向量数据库存储和检索大量上下文信息,以辅助生成模型在生成文本时做出更明智的决策。这种方法不仅提高了生成内容的质量,还增强了模型的解释性和可控性。尽管RAG系统具有诸多优势,但目前大多数应用仍处于POC阶段,仅有少数成功案例成功进入生产环境。原创 2025-01-21 08:15:00 · 1526 阅读 · 0 评论 -
选择合适自己的检索增强生成(RAG)技术:综合指南
在人工智能领域不断发展的进程中,检索增强生成(RAG)技术已成为提升大型语言模型(LLM)性能的关键力量。它通过整合外部知识源,有效弥补了 LLM 自身知识的局限性,在众多应用场景中展现出巨大潜力。今天我们一起聊一下如何选择合适的 RAG 技术(),希望对大家有帮助。原创 2025-01-14 08:15:00 · 3003 阅读 · 0 评论 -
借助 LangGraph、OpenAI 和 Tavily 构建自适应 RAG 系统(含代码)
LangGraph探索LangGraph:开启AI Agent构建的新路径)是一个用于编排工具和管理对话逻辑的库。它允许开发者以图形化的方式定义工作流,将不同的功能模块(如检索器、生成器等)连接起来,形成一个高效的信息处理流程。在自适应RAG系统中,LangGraph负责协调各个组件的工作,确保信息能够顺畅地在不同模块间传递。OpenAI:OpenAI(OpenAI’s O3:AI推理模型的新前沿)是自然语言处理领域的领军企业,其提供的GPT系列模型在文本生成方面表现出色。原创 2025-01-13 12:11:25 · 1634 阅读 · 0 评论 -
TrustRAG:增强RAG系统鲁棒性与可信度的创新框架
在人工智能飞速发展的今天,大语言模型(LLMs)凭借其强大的语言处理能力在诸多领域大放异彩。检索增强生成(RAG)系统()的出现,通过整合外部知识源进一步提升了 LLMs 的性能,使其能针对用户查询提供更准确、更具上下文相关性的回答,在众多知名应用中得到广泛采用。然而,这一系统并非坚不可摧,语料库中毒攻击成为了严重威胁其性能的安全隐患。在此背景下,TrustRAG 应运而生,为解决 RAG 系统的安全问题提供了全新的思路和有效的解决方案。原创 2025-01-10 18:45:00 · 1686 阅读 · 0 评论 -
Table-Augmented Generation(TAG):Text2SQL与RAG的升级与超越
当下AI与数据库的融合已成为推动数据管理和分析领域发展的重要力量。传统的数据库查询方式,如结构化查询语言(SQL),要求用户具备专业的数据库知识,这无疑限制了非专业人士对数据的访问和利用。为了打破这一壁垒,AI驱动的数据库查询方法应运而生,其中Text2SQL和检索增强生成(RAG)()是两种具有代表性的技术。然而,这两种方法在实际应用中均存在局限性,促使研究人员探索更为强大和灵活的框架。今天我们一起了解一下表增强生成(TAG),并探讨其在AI驱动数据库查询领域的潜力和未来研究方向。原创 2025-01-10 08:15:00 · 3119 阅读 · 0 评论 -
Cache-Augmented Generation(CAG):一种更快、更简单的RAG替代方案
Cache-Augmented Generation(CAG)作为一种更快、更简单的替代方案,为RAG技术的四个级别深度解析)带来了革命性的变革。通过预加载知识和预计算推理状态,CAG消除了实时检索的需求,提高了效率和准确性,并简化了系统架构。原创 2025-01-09 08:15:00 · 1988 阅读 · 0 评论 -
Multi-Agentic RAG:探索智能问答系统的新边界(含代码)
Multi-Agentic RAG系统是一种强大的智能问答框架,它通过结合多代理系统和检索增强生成技术,为处理复杂问题提供了新的解决方案。原创 2025-01-07 08:15:00 · 1228 阅读 · 0 评论 -
ValuesRAG:以检索增强情境学习强化文化对齐
ValuesRAG 作为一种创新的检索增强生成框架,为解决 LLMs 中的文化一致性问题提供了极具前景的解决方案。它在理论和实践上的突破,不仅推动了 AI 技术在文化适应性方面的发展,也为 AI 在全球范围内的广泛应用奠定了坚实基础。原创 2025-01-05 15:00:00 · 1070 阅读 · 0 评论 -
RAG 中的分块策略:从基础到前沿的全面剖析
RAG结合了检索和生成的能力,能够针对用户查询从大型数据集中提取相关信息,并据此生成准确的回答。然而,由于LLMs一次只能处理有限数量的标记(tokens),如何将大型数据集分割成适合LLMs处理的小块,即“chunking”,成为了RAG系统中的关键环节。本文将深入探讨chunking策略(),分析其优缺点,并探讨如何选择最适合特定数据集和应用场景的chunking策略。原创 2025-01-04 14:44:34 · 1319 阅读 · 0 评论 -
Query 改写综述:提升信息检索效率与准确性的关键技术
Query 改写,顾名思义,是指对用户的原始查询进行一系列操作,以生成更优化、更精确的查询表达。这些操作可能包括同义词替换、相关概念扩展、查询重组等。其目的在于缩小查询范围,提高检索结果的相关性和准确性。在信息检索过程中,用户的查询往往简洁而模糊,可能包含歧义或多义性,直接进行检索往往难以获得满意的结果。通过Query改写,可以将这些模糊、不完整的查询转化为更具体、明确的表达,从而显著提升检索效果(探索 Auto-RAG:提升人工智能知识获取与生成能力的新路径。原创 2025-01-05 08:15:00 · 3100 阅读 · 0 评论 -
知识增强图(KAG)在LLM检索中的应用
KAG 即知识增强图(Knowledge - augmented Graph),它将大语言模型与结构化的知识图谱深度整合,旨在实现专业领域中的逻辑推理和问答功能。KAG 构建于 OpenSPG 引擎之上,这一引擎是创建和管理知识图谱的框架,就如同一张庞大且详尽的信息地图,能够将原始数据转化为有用的知识,支持知识图谱的持续更新和完善,并将大数据与人工智能系统相连接,以解决复杂的实际问题。OpenSPG 的灵活性使其可以根据不同行业和需求进行定制化调整,为 KAG 的强大功能提供了坚实基础。原创 2025-01-03 08:15:00 · 1360 阅读 · 0 评论 -
优化检索增强生成(RAG)管道:实现更智能AI回应的高级技术
RAG系统通过从大规模知识库中检索相关信息,并基于这些信息进行生成,为用户提供个性化的答案。这种结合信息检索和生成的方法,使得RAG系统在处理复杂问题和生成详细回答方面具有显著优势。然而,要充分发挥RAG系统的潜力,必须对其管道进行优化,以提高效率、准确性和回应质量。原创 2024-12-31 08:15:00 · 1327 阅读 · 0 评论 -
探索 Auto-RAG:提升人工智能知识获取与生成能力的新路径
大型语言模型(LLMs)以其生成连贯和创造性文本的能力而闻名,但它们往往容易受到事实不准确或信息过时的影响。为了缓解这些挑战,检索增强生成(Retrieval-Augmented Generation,RAG)()技术应运而生,成为连接语言流畅性和事实准确性之间差距的关键桥梁。Auto-RAG,作为RAG技术的一个自主迭代检索模型,正逐步成为知识密集型AI任务的新标杆。原创 2024-12-28 08:15:00 · 1915 阅读 · 0 评论 -
构建多代理检索增强生成(Multi-Agent Retrieval-Augmented Generation)系统
多智能体 RAG 系统在构建企业级人工智能应用方面具有巨大潜力,随着人工智能技术和数据管理实践的不断创新,多智能体 RAG 系统将取得更大的发展。未来,不同智能体之间的互操作性将进一步增强,它们能够在不同平台和数据源之间无缝协作。原创 2024-12-25 08:15:00 · 1365 阅读 · 0 评论 -
使用Colpali架构掌握多模态RAG技术
传统的LLM面临着“幻觉”问题,即它们可能生成听起来合理但实际上错误或未经证实的信息。为了解决这个问题,检索增强生成(RAG)模型应运而生。RAG()通过将LLM的生成能力与外部知识检索系统相结合,实现了更准确、更可靠的输出。然而,传统的RAG主要局限于文本数据,无法充分利用多模态信息。为了应对这一挑战,多模态RAG应运而生,其中Colpali架构成为这一领域的佼佼者。本文将详细介绍Colpali架构及其在掌握多模态RAG中的应用。原创 2024-12-24 08:15:00 · 1387 阅读 · 0 评论 -
面向企业RAG(Retrieval Augmented Generation)系统的多维检索框架
RAG系统通过语义搜索,能够高效地回答各种问题,这在处理大量文本文档如技术论文和培训手册时尤为有效。然而,当RAG系统应用于企业环境时,面临的挑战远不止于此。企业拥有大量多样化的非结构化数据资产,这些数据分散在多种数据存储和格式中,如文档中心、数字工作空间、票务系统、关系数据库、日志和电子邮件等。因此,构建能够利用这些资产的企业级RAG系统变得尤为重要原创 2024-12-18 08:15:00 · 778 阅读 · 0 评论 -
语义缓存:提升 RAG 性能的关键策略
RAG是一种AI技术,它结合了从外部源检索相关信息与语言模型来处理这些信息以生成准确、上下文感知的响应。构建一个基于RAG(微软最新研究:RAG(Retrieval-Augmented Generation)的四个级别深度解析数据收集与存储:首先,需要收集与特定主题或领域相关的数据,并将其存储在向量数据库中。在向量数据库中,信息以向量的形式存储,以便高效检索。语言模型选择:选择一个强大的语言模型,如GPT-4或Llama 3,来处理这些向量数据并生成响应。系统集成。原创 2024-12-13 08:15:00 · 2665 阅读 · 0 评论 -
RAGOps相关面试题
RAGops面试题原创 2024-12-11 14:21:17 · 1070 阅读 · 0 评论 -
RAG综述:探索检索增强生成技术的多样性与代码实践
当前LLM受限于其训练时所用的固定数据集,难以处理私有或最新的信息,且可能存在“幻觉”现象,即提供错误但看似合理的答案。为了解决这些问题,检索增强型生成(Retrieval-Augmented Generation,简称RAG)框架应运而生。RAG()通过引入外部文档,利用上下文学习提升LLM的响应质量,确保提供的信息不仅上下文相关,而且准确、及时。今天我们一起探讨RAG的多种技术及其优缺点,以期为开发高效RAG系统提供实践指导(代码实践链接在文末)。原创 2024-12-09 08:15:00 · 1405 阅读 · 0 评论 -
RAG(Retrieval-Augmented Generation)评估面试题
RAG面试题原创 2024-12-06 10:07:17 · 1597 阅读 · 0 评论 -
AGI:呼唤更好的检索技术,而非仅仅依赖于LLMs
在追求 AGI 的道路上,我们不能仅仅关注于提升 LLMs 的性能,更应重视检索能力的发展。原创 2024-12-05 08:15:00 · 992 阅读 · 0 评论