
prompt
文章平均质量分 92
大模型之路
这个作者很懒,什么都没留下…
展开
-
结构化输出指南:三个必备prompt提示技巧
当我们尝试将LLM融入到实际的应用程序或工作流程中时,却常常遇到一个棘手的问题——模型输出的信息格式并不总是我们所期望的。它们的回答往往是一段段自由形式的文本,这对于人类理解来说可能足够,但对于代码和自动化系统而言,处理起来却困难重重。这时候,结构化输出(Structured Output)的重要性就凸显出来了。本文将为初学者详细介绍结构化输出的概念、重要性,并深入讲解三个必备的提示技巧,帮助大家更好地从大语言模型中获取可用的结构化数据。原创 2025-05-04 08:15:00 · 737 阅读 · 0 评论 -
提示工程心理学:为何 AI “答非所问” 及解决之道
以 ChatGPT 为代表的 AI 工具日益成为人们工作、学习和生活中的得力助手。无论是撰写邮件、润色文章,还是获取创意灵感,人们都习惯向 AI 发出指令,期望得到满意的回应。然而,不少人在使用过程中都遭遇过这样的困扰:向 AI 提出请求后,得到的回答看似没问题,却又有些笼统、生硬,与自己内心的期待相去甚远,甚至完全偏离了原本想要解决的问题。这不禁让人疑惑:为何 AI 会 “答非所问” 呢?其实,这背后隐藏着复杂的心理学因素,而掌握提示工程的心理学原理,正是解锁 AI 强大潜能、让其给出理想答案的关键。原创 2025-04-22 08:15:00 · 561 阅读 · 0 评论 -
大概念模型(Large Concept Models)会取代提示工程吗?
大概念模型致力于超越表面的语言模式,构建对抽象概念的深度理解和表达。与传统模型不同,它的训练数据来源更为广泛,涵盖了语言、符号、逻辑、多模态信息以及目标驱动的数据。这使得大概念模型具备了一系列强大的能力。在意图识别方面,它能够理解用户隐含的需求,即使用户没有精确表述,也能把握其核心意图。例如,当用户询问 “明天去爬山要准备什么”,模型能理解用户需要的不仅是物品清单,还可能包括天气信息、路线规划等相关内容。在抽象推理能力上,大概念模型可以进行多步逻辑推理和类比思考,解决复杂的问题。原创 2025-04-13 08:15:00 · 1271 阅读 · 0 评论 -
提示工程中的思维结构:让大语言模型更聪明地思考
要真正挖掘 LLMs 的全部潜力,关键在于引导它们如何思考。提示工程中的思维结构正是实现这一目标的核心所在,它通过精心设计的提示技术,显著提升了模型推理能力、回答可靠性和透明度。今天我们一起了解一下提示工程中的思维结构。原创 2025-04-12 08:15:00 · 541 阅读 · 0 评论 -
从人类标签中衍生 AI 生成提示:解锁数据标注新效能
数据标注作为机器学习和深度学习的基础环节,其质量和效率直接影响模型的性能。传统的人工标注方式虽然精准,但成本高昂、耗时费力,难以满足海量数据的处理需求。随着生成式人工智能(Generative AI)技术的兴起,自动化数据标注成为可能,其中从人类标签中衍生 AI 生成提示的方法备受关注,为数据标注领域带来了新的突破。原创 2025-03-30 08:15:00 · 761 阅读 · 0 评论 -
Prompt Engineering 常见陷阱及规避方法
Prompt Engineering(提示工程)()已成为与 AI 交互的关键技能。它关乎如何巧妙地构造问题或指令,让 AI 系统准确理解并给出理想回应。然而,这条探索之路布满了陷阱,稍有不慎就会影响 AI 输出的质量和效果。深入剖析这些常见陷阱,并掌握有效的规避策略,对于提升提示工程能力、充分发挥 AI 价值至关重要。原创 2025-03-25 08:15:00 · 669 阅读 · 0 评论 -
停止过度提示:为什么简短的 AI 提示比长prompt更胜一筹
当下如何与 AI 高效互动成为众多用户关注的焦点,而提示词(prompt)的运用则是其中的关键。提示词作为与 AI 沟通的桥梁,其长度和内容的详略在很大程度上影响着 AI 的回应效果以及用户体验。近年来,“过度提示” 现象逐渐引发热议,与之相对的,短提示词的优势开始受到更多关注。本文将深入探讨为何短 AI 提示词比长提示词更具优势。原创 2025-03-23 08:15:00 · 1068 阅读 · 0 评论 -
9个最佳prompt框架:解锁LLMs无限潜力
要想充分利用这些强大的工具,我们需要学会如何给它们提供清晰、结构化且有针对性的提示(prompts)。本文将介绍九个最佳的提示框架,帮助你在使用LLMs进行研究时获得更加精准和有价值的答案。原创 2025-03-18 08:15:00 · 924 阅读 · 0 评论 -
基于提示技术(prompt)的大模型安全保障
从智能聊天机器人到内容创作辅助工具,从智能客服到智能写作平台,LLMs 已深入人们生活与工作的各个层面。然而,随着应用的不断深入,安全问题逐渐成为制约其发展的关键因素。运用提示技术(prompt)()保障 LLMs 的安全,成为当前亟待解决的重要课题。原创 2025-03-15 08:15:00 · 993 阅读 · 0 评论 -
比COT更高效的推理提示策略Chain-of-Draft(COD)
提示策略的出现,让 LLMs 在复杂任务上取得了显著进展,但也带来了计算资源消耗大、推理冗长等问题。在此背景下,一种受人类认知过程启发的新策略 —— 草稿链(Chain-of-Draft,CoD)提示应运而生,为 LLMs 推理效率的提升开辟了新路径。原创 2025-03-05 08:15:00 · 985 阅读 · 0 评论 -
大模型中的提示词(prompt)压缩:让每个Token都物尽其用
提示词压缩在大语言模型的应用中扮演着不可或缺的角色。它不仅是应对令牌限制、成本和延迟等挑战的有效手段,更是提升大语言模型应用效率和质量的关键技术。原创 2025-03-03 08:15:00 · 1110 阅读 · 0 评论 -
Prompt Decorators:改善AI响应的简单方法(文末含代码)
Prompt Decorators 的灵感来源于 Python 装饰器。在 Python 编程中,装饰器可以结构化地修改函数的行为。在上述代码中,装饰器对函数进行了修改,使其能够测量自身的执行时间。受此启发,Prompt Decorators 通过在提示开头添加简单的前缀,以结构化且可复用的方式修改 AI 的回应。在 Python 中,符号用于将装饰器应用于函数和类,但在许多在线平台和工具中,也被用于标记用户和代理,容易产生冲突,影响 AI 提示的准确性和清晰度。原创 2025-02-21 08:15:00 · 2139 阅读 · 0 评论 -
如何为DeepSeek这类推理模型编写Prompt
大型语言模型(LLMs)凭借强大的语言处理能力崭露头角。其中,以 DeepSeek R1 为代表的推理模型,在逻辑推理、问题解决等任务上表现出色。然而,要充分发挥这类模型的潜力,撰写有效的 Prompt 至关重要。本文将深入探讨如何为 DeepSeek 这类推理模型撰写高质量的 Prompt,助力使用者实现更精准、高效的交互。原创 2025-02-19 08:15:00 · 1061 阅读 · 0 评论 -
推理框架对比:ReAct、思维链(COT)和思维树(TOT)谁更胜一筹
推理框架作为 AI 解决复杂问题的核心机制,正逐渐成为研究和应用的焦点。ReAct、思维链(Chain-of-Thought,CoT)()和思维树(Tree-of-Thoughts,ToT)这三种推理框架各具特色,它们从不同角度模拟人类思维方式,为 AI 提供了多样化的问题解决策略。深入研究和比较这些框架,对于推动人工智能的发展、拓展其应用场景具有重要意义。原创 2025-02-11 08:15:00 · 2291 阅读 · 0 评论 -
利用自适应Prompt Engineering增强 RAG 系统:优化信息检索与处理能力
自适应提示工程作为一种优化RAG模型的新方法,在提高检索准确性、增强生成多样性和优化系统性能方面展现出了巨大的潜力。通过深度理解用户需求、动态调整提示以及高效检索与生成等关键技术,自适应提示工程能够显著提高RAG的性能和用户体验。原创 2025-02-05 08:15:00 · 971 阅读 · 0 评论 -
你的AI Prompt为何不起作用?掌握这几点,让AI听你的话
在当今这个生成式AI工具飞速发展的时代,从人力资源到市场营销,再到工程技术团队,AI正在无可争议地改变着企业的运营模式。然而,尽管AI的应用越来越广泛,许多用户却发现,他们得到的输出结果往往远低于预期,或者未能准确表达最终用户所期望的回应。问题的根源在于:无效的提示(prompts)(原创 2025-01-17 08:15:00 · 1605 阅读 · 0 评论 -
利用思维缓冲(Buffer of Thoughts(BoT))提升人工智能输出质量
BoT框架的核心在于其设计的元缓冲区和一系列高级思维模板。原创 2025-01-16 08:15:00 · 1044 阅读 · 0 评论 -
AutoReason:自动Few-Shot推理分解
当下大型语言模型(LLMs)备受瞩目。然而,尽管LLMs在许多自然语言任务上表现出色(),它们在处理需要复杂多步推理的任务时仍面临挑战。为了解决这一问题,伊兹密尔理工学院的研究人员提出了AutoReason框架。AutoReason通过自动生成推理步骤,有效提升了LLMs在复杂推理任务中的表现,并增强了其可解释性。本文将详细介绍AutoReason的架构、原理及其实验效果。希望对大家有所帮助。原创 2025-01-13 08:15:00 · 992 阅读 · 0 评论 -
解锁LLMs潜力:掌握prompt优化的关键技巧
在当今数字化时代,大型语言模型(Large Language Models,简称LLMs)如ChatGPT已成为我们数字武器库中不可或缺的工具。从家庭作业到复杂问题解决任务,LLMs在各个领域都发挥着重要作用。然而,这些模型输出的质量在很大程度上取决于我们如何与它们进行沟通。掌握优化提示(Prompting)的艺术,可以显著提高我们收到的回应的相关性和准确性。今天我们聊一下如何优化LLMs的提示,以实现更有效的交互。原创 2025-01-08 20:21:22 · 932 阅读 · 0 评论 -
PromptWizard:微软在AI prompt优化方面的革命性方法
PromptWizard代表了提示优化领域的一项重大进展。通过结合反馈驱动的精炼、指令和示例的联合优化以及自我生成的链式思考步骤,它为提示工程的挑战提供了一个强大且高效的解决方案。原创 2025-01-08 08:15:00 · 1408 阅读 · 0 评论 -
优秀Prompt库大盘点:让你的Prompt更专业
Prompt Engineering作为推动AI技术落地的重要一环,正逐渐受到越来越多开发人员的关注和重视。通过合理利用顶级Prompt库资源,我们可以快速提升自己的Prompt Engineering技能水平,为项目开发和应用创新提供有力支持。原创 2025-01-03 18:15:00 · 1956 阅读 · 0 评论 -
提示词(Prompt)书写框架:解锁高效与精准的AI交互
大语言模型(LLM)如 ChatGPT、Claude 和 Gemini 等已经深入到我们的生活和工作之中。它们凭借强大的语言处理能力,能够完成从撰写文章、提供信息到代码生成等各种各样的任务。然而,要想从这些模型中获得准确、有用且符合期望的输出,创建有效的 AI 提示词至关重要。今天我们一起聊一下书写prompt框架。原创 2025-01-03 14:15:00 · 2067 阅读 · 0 评论 -
HyDE(Hypothetical Document Embeddings):探索假设性文档嵌入在AI检索中的应用
随着人工智能技术的不断发展,信息检索领域也在持续演进。其中,一种名为 HyDE(Hypothetical Document Embeddings)的方法崭露头角,为零样本密集检索带来了新的突破。HyDE 通过结合大语言模型的生成能力和对比学习模型的编码能力,在不依赖相关性标签的情况下实现了有效的信息检索。今天我们一起聊一下 HyDE。原创 2024-12-22 08:15:00 · 1320 阅读 · 0 评论 -
提示词注入攻击(Prompt Injection Attacks ):大语言模型安全的潜在威胁
提示词(prompt)注入攻击是指攻击者通过巧妙构造输入提示词(),试图突破大语言模型的安全防护机制,引导模型产生不符合预期甚至有害的输出。这种攻击利用了大语言模型对输入的敏感性和其在处理复杂提示词时可能出现的漏洞。今天我们一起了解一下可能的一些提示词注入攻击手段,以帮助大家更好地保护大语言模型免受攻击,确保其安全可靠地运行。一、直接提示词注入直接提示词(prompt)注入是攻击者最直接的手段之一。他们通过混入特殊字符、符号或毫无意义的字符串,来迷惑模型,使其无法正确识别并过滤这些恶意内容。原创 2024-12-20 08:15:00 · 4165 阅读 · 0 评论 -
连续思维链(Chain of Continuous Thought):解锁LLM的高级推理能力
Coconut 方法的核心在于 LLM 能够在 “语言模式” 和 “潜在模式” 之间灵活切换。在语言模式下,模型如同标准语言模型一样,以自回归方式生成下一个词元(token)。而在潜在模式中,模型直接利用前一个词元的最后隐藏状态作为下一个输入嵌入,此隐藏状态被定义为 “连续思维”,代表了模型当前的推理状态。原创 2024-12-17 08:15:00 · 1426 阅读 · 0 评论 -
提示词(prompt)相关面试题(20道)
prompt面试原创 2024-12-10 15:18:23 · 1090 阅读 · 0 评论 -
探索 LangChain:大语言模型的强大提示模板框架
LangChain 是一个开源库,旨在增强与大语言模型(LLMs)及其他自然语言处理(NLP)工具的交互。它致力于实现高级提示管理,并创建动态工作流程,以最大化语言模型的效率。其高度模块化的结构是其显著优势之一,开发者可以根据需求选择和定制所需组件,灵活管理语言模型项目。提示是提供给语言模型的初始输入,其作用是引导模型生成期望的输出。例如,询问 “地球上最高的山峰是什么?” 这样的问题就是一个提示,帮助模型给出正确答案(珠穆朗玛峰)。原创 2024-12-10 14:36:49 · 1151 阅读 · 0 评论 -
自动思维链(Auto-CoT):LLM推理能力的自动化提升
大型语言模型在处理自然语言任务时,通常依赖于大量的训练数据和复杂的神经网络结构。尽管这些模型在生成文本和回答问题方面表现出色,但在面对需要复杂推理的任务时,它们的表现往往不尽如人意。为了克服这一挑战,研究人员开发了一种名为“思维链”(Chain-of-Thought,CoT)的引导方法。CoT()通过要求模型在回答问题之前生成一系列中间推理步骤,从而诱导模型进行更有条理和逻辑性的思考。CoT方法有两种主要范式:一种是添加简单的提示语,如“让我们一步一步思考”,以促进LLMs生成推理链;原创 2024-12-11 08:15:00 · 1699 阅读 · 0 评论 -
提示工程(Prompt Engineering)最全综述:本质、技术、最佳实践
提示工程(prompt engineering),简而言之,是构建和优化输入提示以引导LLMs生成准确且富有洞察力的输出的艺术和科学。在LLMs的世界里,一个精心设计的提示就如同一位经验丰富的向导,能够引领模型穿越复杂的信息海洋,找到用户心中的答案。原创 2024-12-04 08:15:00 · 2881 阅读 · 0 评论 -
Prompt实战:解锁五大高级Prompt技巧
随着 LLMs 的不断发展,我们的prompt技术也应不断进步。多角色扮演、思维链推理、动态语境扩展、对比式提示和语境叙事锚定这五种先进的策略是解锁这些模型全部潜力的有力工具。原创 2024-11-30 08:40:43 · 1105 阅读 · 0 评论 -
Chain-of-Thought (CoT):引导大型语言模型解决问题的有效策略
Chain-of-Thought作为一种创新的prompt技术,为大型语言模型解决复杂问题提供了新的思路和方法。通过清晰地定义问题、逐步分解步骤和逻辑连接推理过程,CoT不仅提高了模型的准确性和一致性,还拓展了其应用领域和潜力。原创 2024-11-30 08:33:09 · 1743 阅读 · 0 评论 -
Cognitive Prompting(认知提示):赋予AI以人类思维的钥匙
认知提示方法,为 AI 的发展带来了新的思路和方向。它通过让模型遵循认知操作,更像人类一样思考,在提高问题解决能力方面展现出了巨大的潜力。原创 2024-11-30 08:15:52 · 731 阅读 · 0 评论 -
使用Dialog Engineering和Burr改进System Prompt
Dialog Engineering和Burr为对话系统的设计和优化提供了新的方法和工具。通过利用这些方法和工具,我们可以更加科学和系统地进行对话系统的设计和优化工作,从而提高对话系统的性能和用户体验。原创 2024-11-29 17:32:47 · 796 阅读 · 0 评论