
Agent
文章平均质量分 93
大模型之路
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
你需要了解的 AI 智能体设计模式
这四种设计模式——反思模式、工具使用模式、规划模式和多智能体协作模式——是构建 AI 智能体的基础,它们不仅能让智能体变得聪明,还能使其具备适应性、高效性,并有能力应对现实世界的复杂问题。原创 2025-07-18 14:45:47 · 808 阅读 · 0 评论 -
Agentic Memory:解析AI智能体的多种记忆类型
智能体记忆是AI智能体实现智能化、个性化和持续进化的核心支撑。情景记忆让智能体“记得过去”,能够从历史交互中学习;语义记忆让智能体“懂得知识”,能够提供准确全面的答案;程序记忆让智能体“知道规矩”,能够安全合规地运作;短期记忆让智能体“专注当下”,能够动态处理即时任务。原创 2025-07-18 14:44:29 · 572 阅读 · 0 评论 -
开源智能体AI框架全面对比:构建智能工作流的深度指南
智能体 AI 框架的快速演进为开发者带来了丰富的技术选择,同时也提出了更高的选型挑战。LangGraph 以其成熟的生态和全面的功能成为复杂工作流的首选,CrewAI 用角色化设计降低了多智能体协作的门槛,LlamaIndex Workflows 则为 RAG 应用树立了新的技术标杆。微软系框架(AutoGen、Semantic Kernel、TaskWeaver)凭借企业级能力在特定领域占据优势,Haystack Agents 则为生产级部署提供了坚实保障。原创 2025-07-07 08:15:00 · 795 阅读 · 0 评论 -
2025年软件开发者必备的10大AI智能体框架全解析
从LangChain的模块化设计到MetaGPT的软件开发自动化,从Rasa的专业对话能力到Camel-AI的跨模态协作,2025年的AI智能体框架已形成丰富的技术生态。对于开发者而言,这些框架不仅是工具,更是构建智能应用的基础设施——它们降低了AI开发的技术门槛,拓展了可能性边界。原创 2025-07-03 08:15:00 · 1230 阅读 · 0 评论 -
为什么大多数 AI 代理在生产中失败(以及如何构建不会失败的 AI 代理)
AI智能体的生产化落地,是一场从"实验室艺术"到"工业级工程"的艰难跃迁。那些折戟沉沙的项目,往往败于对生产环境复杂性的低估,败于对工程化能力的忽视。而那些屹立不倒的智能体,无不是在扎实的工程基础上,构建了"稳定可靠、知识赋能、架构清晰、持续进化"的核心能力原创 2025-07-02 08:15:00 · 860 阅读 · 0 评论 -
探索谷歌Agent开发工具包(ADK):从技术架构到应用生态的全面解析(含code)
谷歌Agent开发工具包(ADK)的推出,标志着智能体技术从理论研究走向大规模工程应用的转折点。它不仅提供了一套完整的智能体开发工具链,更通过模块化架构和开放生态,降低了复杂智能系统的开发门槛。原创 2025-06-28 08:15:00 · 1536 阅读 · 0 评论 -
C2A 编排平台:构建可控可定制的智能体协同生态
C2A编排平台通过标准化框架、模块化设计和先进的数据管理技术,成功解决了多智能体协同中的互操作性和可控性难题,为构建复杂AI系统提供了可复用的“操作系统级”解决方案。其核心价值不仅在于技术层面的创新(如动态记忆链接、领域特定委托),更在于通过协同机制释放了智能体的集体效能——单个智能体的“专项技能”通过平台升维为整个网络的“群体智慧”。原创 2025-06-26 08:15:00 · 761 阅读 · 0 评论 -
人工智能通信协议的对比:MCP、ACP与A2A
MCP、ACP和A2A并非竞争关系,而是互补的技术方案,分别服务于模型能力扩展与代理间对等协作这两个不同的架构层。MCP是模型连接外部世界的“接口层”,ACP和A2A则是代理构建智能生态的“社交层”。开发者在选型时,需深入分析系统的架构目标(集中式vs分布式)、交互模式(工具调用vs代理对话)、数据特性(结构化vs非结构化)及团队技术栈等因素,避免因“错层使用”导致性能瓶颈或功能缺失。原创 2025-06-25 08:15:00 · 883 阅读 · 0 评论 -
大型多模态智能体与多智能体系统:对比分析
大型多模态智能体与多智能体系统代表了AI发展的两条核心路径——前者通过单一实体的多维度能力突破,实现对复杂世界的综合理解;后者借助分布式智能的协作优势,解决单体难以处理的大规模问题。两者并非对立,而是在技术互补与架构融合中走向共生:LMA为MAS的智能体赋予更强的环境理解能力,MAS为LMA的应用拓展提供群体协作框架。原创 2025-06-24 08:15:00 · 952 阅读 · 0 评论 -
探索Agno——构建智能体系统的全栈Python框架
Agno作为一个全面的智能体框架,通过模块化设计和丰富的功能组件,降低了构建复杂智能体系统的门槛。从单个智能体的快速原型到多智能体团队的复杂协作,从本地开发到生产级部署,Agno提供了全生命周期的支持。原创 2025-06-23 08:15:00 · 1655 阅读 · 0 评论 -
如何使用LangGraph在AI应用中动态路由查询(结合RAG与LLMs)
通过LangGraph实现的动态路由机制,AI应用得以摆脱“一刀切”的处理模式,根据用户查询的语义、上下文和业务需求,动态选择最优处理路径。这种能力不仅提升了系统的响应效率和准确性,更赋予AI应用可扩展的“智慧中枢”——无论是结合RAG处理专业数据,还是通过LLM实现自然交互,LangGraph都为开发者提供了灵活且强大的编排工具。原创 2025-06-17 08:15:00 · 852 阅读 · 0 评论 -
AI Agent架构:基于A2A与MCP协议的技术整合与实践探索
AI Agent架构的核心竞争力在于标准化带来的规模化协作能力。通过A2A与MCP协议,不同厂商的AI模型、工具与资源得以在统一框架下协同工作,形成从数据输入、任务分解到执行落地的完整链条。未来,随着协议生态的成熟与技术融合的深入,AI Agent将逐步从辅助工具演变为数字世界的“通用劳动者”,在智能制造、智慧医疗、智能金融等领域实现复杂任务的全自动化处理,推动人工智能技术从实验室走向大规模工业化应用。原创 2025-06-16 08:15:00 · 2106 阅读 · 0 评论 -
突破延迟壁垒:AI智能体优化深度解析
在AI领域,速度已不再是单纯的技术指标,而是用户体验、商业价值甚至产品竞争力的核心构成要素。一个600毫秒响应的智能体与一个11秒响应的智能体之间,相差的不仅是10秒的时间,更是用户对产品“可用”与“不可用”的根本判断。从技术层面看,延迟优化需要融合模型压缩、并行架构、流式交互等多维度技术;从商业层面看,它要求企业将“速度”视为与“准确性”同等重要的产品特性,贯穿于需求分析、架构设计、迭代优化的全流程。原创 2025-06-14 08:15:00 · 609 阅读 · 0 评论 -
构建真正有效的AI代理的七个关键步骤:从理论到实践的完整指南
构建真正有效的AI代理,本质上是一场"去泡沫化"的技术实践。它要求我们跳出"炫技式开发"的陷阱,回归"解决真实问题"的初心。通过本文提出的七大步骤,企业与开发者能够建立一套可复制的方法论,让AI代理从"演示厅的花瓶"转变为"生产线的齿轮",最终在降本增效、创新商业模式等方面释放巨大价值。原创 2025-06-11 08:15:00 · 881 阅读 · 0 评论 -
如何在不陷入复杂性陷阱的情况下构建生产就绪的 AI 代理
正如Unix之父肯·汤普逊所言:“ simplicity is the ultimate sophistication”(简单是终极的复杂)。在智能体架构的设计中,这种“少即是多”的哲学,或许正是通往可落地AI的必经之路。当每个智能体都能在其专精领域成为“专家”,由它们组成的协同网络,终将比任何单一的“超级智能体”更加强大、可靠且富有生命力。原创 2025-06-09 08:15:00 · 1164 阅读 · 0 评论 -
从执行轨迹到结果质量:AI 代理系统评估的核心要素与方法论
人工智能代理系统的评估是一个复杂的挑战,远远超出了传统的模型评估。它不仅需要理解最终输出,还需要理解系统的中间决策、工具使用和推理路径。通过采用基于代码的评估、以大型语言模型作为评判者的评估和人工标注等多种评估方法,结合对代理轨迹的分析,我们可以更全面、准确地评估人工智能代理系统的性能。原创 2025-06-01 08:15:00 · 852 阅读 · 0 评论 -
AI Agent的五层难度进阶:从工具调用到系统构建(附代码实现)
代理开发的五层进阶,本质是一个 “从简单规则到复杂系统” 的工程化过程。原创 2025-05-23 08:15:00 · 884 阅读 · 0 评论 -
MicroAgents 框架,如何实现 LLM 工具调用自由?(含代码)
在LLM实际应用中,如何高效地协调多个语言模型智能体,并实现广泛的工具调用,成为了一个亟待解决的关键问题。MicroAgents框架应运而生,它以其轻量级、灵活性强的特性,为这一难题提供了创新的解决方案。原创 2025-05-10 08:15:00 · 1345 阅读 · 0 评论 -
RASA:LLM系统中实现智能体记忆的认知框架(含代码)
大语言模型(LLMs)和智能体不断进化,已不再局限于简单的响应和输出,而是在推理与行动能力上持续成熟。随着智能体架构的进步,记忆、回忆和知识应用的方式,在系统设计和可信度方面变得愈发关键且复杂。RASA(Role-Aligned Software Architecture,角色对齐软件架构)作为一个创新性的认知框架,为构建具备强大记忆能力、能够灵活适应各种场景的智能体提供了全新的思路和方法。原创 2025-05-09 08:15:00 · 1009 阅读 · 0 评论 -
AI Agent评估:指标、策略与最佳实践
AI智能体正逐渐融入到各个领域,从日常的对话助手到复杂的工作流程自动化,其应用范围不断拓展。然而,确保这些智能体能够可靠、高效地完成任务至关重要,这就使得AI智能体评估成为了人工智能发展过程中不可或缺的一环。本文将深入探讨AI智能体评估的指标、策略以及最佳实践,为读者全面解读这一关键领域。原创 2025-05-03 08:15:00 · 1538 阅读 · 0 评论 -
如何使用 Python 和 FastAPI 构建带认证的 MCP 服务器(含代码)
曾经只存在于科幻想象中的场景——AI与任何应用程序无缝对接,如今正逐步成为现实。就像API长期作为开发者与软件进行交互的接口一样,模型上下文协议(Model Context Protocol,MCP)正逐渐成为AI智能体以结构化、感知上下文的方式与应用程序交互的首选标准。诸如Anthropic(该协议的创立者)、OpenAI、谷歌等众多AI供应商都在广泛采用这一协议。对于应用程序开发者和维护者而言,用户通过AI智能体而非直接与应用交互的时代已经悄然来临,支持这一转变的关键就在于搭建MCP服务器。原创 2025-05-01 08:15:00 · 1055 阅读 · 0 评论 -
AI无边界:通过MCP实现不同智能体框架的协作
在人工智能飞速发展的当下,智能体框架如雨后春笋般不断涌现。从LangChain利用高度抽象的方式构建智能体,到CAMEL - AI为用户提供细致配置选项来创建智能体,不同框架各显神通。但这些框架之间就像说着不同“方言”的个体,彼此沟通困难重重。直到模型上下文协议(Model Context Protocol,MCP)的出现,才为打破这一僵局带来了希望,开启了不同智能体框架协作的新篇章。原创 2025-04-28 08:15:00 · 1045 阅读 · 0 评论 -
构建智能多智能体 AI 系统:A2A 与 MCP 的深度剖析与实践指南
从企业复杂业务流程的自动化处理,到智能交互场景的深化拓展,多智能体协作模式展现出了超越单一模型的卓越效能。在这一发展进程中,Agent-to-Agent(A2A)协议和模型上下文协议(Model Context Protocol,MCP)作为两种主流架构方式,各自以独特的设计理念和技术特性,在不同应用场景中发挥着关键作用。深入探究它们的架构细节、技术权衡、实际应用案例以及未来发展趋势,对于企业和开发者构建高效、智能且可持续发展的 AI 系统具有重要意义。原创 2025-04-24 08:15:00 · 1275 阅读 · 0 评论 -
LLM架构实战:用 LangChain 和 LangGraph 打造多智能体研究助手(含代码)
大语言模型(LLM)的应用越来越广泛,从智能客服到内容创作,从数据分析到研究辅助,LLM 正逐渐改变着人们获取信息和解决问题的方式。今天,我们就来深入探讨大语言模型的架构,尤其是单智能体和多智能体架构,并手把手教大家用 LangChain 和 LangGraph 搭建一个多智能体研究助手。原创 2025-04-23 08:15:00 · 2731 阅读 · 0 评论 -
认识谷歌 A2A:将颠覆多智能体 AI 系统的协议
近日谷歌在 Cloud Next 25 大会上开源的 Agent2Agent(A2A)协议,无疑成为了该领域一颗耀眼的新星,引发了广泛关注和热议。这一协议被寄予厚望,有望如同一把神奇的钥匙,开启多智能体 AI 系统高效协作的全新大门,彻底改变当前人工智能应用的格局。原创 2025-04-15 08:15:00 · 963 阅读 · 0 评论 -
AI Agent 评测新利器——OpenAI 开源 PaperBench
评估 AI 的能力成为当下研究的关键领域。其中,AI 对前沿 AI 研究的复制能力评估意义重大,它不仅能衡量 AI 的自主性和研发能力,还能为 AI 的安全发展提供重要参考。在此背景下,PaperBench 基准测试应运而生,为评估 AI 复制 AI 研究的能力提供了全新的视角与方法。原创 2025-04-08 11:06:57 · 890 阅读 · 0 评论 -
探秘 LLM Agents:ReAct 框架藏着哪些惊喜?
ReAct,即 Reasoning and Acting,于 2023 年 3 月在论文 “ReAct: Synergizing Reasoning and Acting in Language Models” 中被提出。它旨在让 LLM 在解决任务时更像人类一样思考和行动。ReAct 框架主要包含三个步骤:推理、行动和观察。当接收到问题时,Agent 首先进行推理,生成解决问题的思路、计划或策略。然后,根据推理结果采取行动,比如搜索信息或与环境进行交互。原创 2025-04-08 11:05:53 · 1143 阅读 · 0 评论 -
如何在 Pydantic AI 智能体中使用 MCP(含代码)
通过上述步骤,成功实现了在 PydanticAI 智能体中使用 MCP 工具,克服了 PydanticAI 原生不支持 MCP 的限制。这一过程不仅深入了解了 MCP 的工作原理和应用方式,还展示了如何通过技术手段解决框架之间的兼容性问题,为开发更强大的 AI 智能体提供了可行的方案。原创 2025-03-20 08:15:00 · 1788 阅读 · 0 评论 -
OpenAI最新发布Agents SDK深度解析:构建智能体的新利器
随着AI技术的不断发展,高级推理、多模态交互等模型能力为AI Agents奠定了坚实的基础。然而,开发者在构建生产级AI Agents(Manus开源复现OpenManus:开源AI Agent框架的深度解析与探索)时,仍然面临着诸多挑战。为了解决这些问题,OpenAI推出了全新的Responses API、三种内置工具以及开源的Agents SDK,旨在帮助开发者更容易地创建能自动完成任务的AI Agents。原创 2025-03-14 08:15:00 · 1087 阅读 · 0 评论 -
Manus开源复现OpenManus:开源AI Agent框架的深度解析与探索
系统提示为智能体提供了基本的角色定义和行为准则。通过系统提示,智能体了解自己的身份和任务范围,例如,OpenManus 的系统提示告知智能体它是一个全能的 AI 助手,能够解决用户提出的任何任务,并可以使用各种工具来高效完成复杂请求。这种角色定义为智能体的行为提供了基本框架,使其在与用户交互时能够明确自己的职责和能力边界。原创 2025-03-12 08:15:00 · 1225 阅读 · 0 评论 -
Manus AI:全面概述
Manus AI 作为中国新推出的人工智能,凭借其卓越的性能和创新的技术,在全球人工智能领域引起了广泛关注。本文将对 Manus AI 进行全面深入的探讨,涵盖其公司背景、技术能力、应用场景、战略定位以及未来发展的影响与挑战。原创 2025-03-11 08:15:00 · 882 阅读 · 0 评论 -
基于 DeepSeek 从零构建 ReAct AI 智能体(文末含代码)
传统 AI 系统在处理简单任务时表现出色,它按照预定义逻辑处理输入、分析数据并产生响应。然而,在面对复杂、多步且需要持续调整和外部交互的问题时,传统方法就显得力不从心。例如,回答 “2024 年国际足联金球奖得主出生城市的天气如何” 这类问题,涉及到确定得主、找到其出生地以及查询该地天气等多个步骤,传统 AI 系统难以应对。ReAct AI 智能体则通过引入 “思考→行动→观察” 的循环模式,有效解决了上述问题。原创 2025-02-25 08:15:00 · 1671 阅读 · 0 评论 -
OpenAI Operator:开启智能代理新纪元
OpenAI Operator的推出,标志着AI技术又向前迈进了一大步。它不仅为用户提供了前所未有的便捷与效率,还为企业和公共部门带来了全新的互动和转化机会。尽管目前仍存在一些局限性,但随着技术的不断进步和应用的不断拓展,Operator将在未来发挥更加重要的作用,成为数字生态中不可或缺的一部分。原创 2025-02-23 08:15:00 · 1049 阅读 · 0 评论 -
探索 Hugging Face‘s Smolagents:简化Agent开发的新利器(含代码)
Smolagents,顾名思义,是一个“非常简单的库”,它解锁了语言模型中的智能体能力。在Hugging Face的官方公告博客中,Smolagents被描述为一个能够减少开发者在构建智能体时所需编写的代码量,同时保持灵活性和控制力的工具。智能体,作为AI领域的一个重要概念,其核心在于通过LLMs动态地解决任务。它们需要观察环境、制定计划并执行这些计划,而这一切都离不开一系列复杂的组件。这些组件确保了智能体能够正常运作,同时不会过度消耗API信用和执行时间。原创 2025-02-13 08:15:00 · 1371 阅读 · 0 评论 -
评估多代理(Multi-Agent)系统:深度解析与实践探索
对多代理系统进行评估(Agent-as-a-Judge:AI系统评估新思路)至关重要。从系统性能优化角度看,准确了解系统的优势与不足能够指导开发者针对性地改进代理的设计与协作机制。在资源分配方面,合理的评估有助于确定是否需要增加或调整代理资源。对于用户体验而言,只有经过严格评估的系统才能确保为用户提供高效、准确的服务。本文涉及基于组件的评估(Component-Based Evaluation)和端到端评估(End-to-End Evaluation,E2E)相结合的方法。原创 2025-01-19 08:15:00 · 1490 阅读 · 0 评论 -
Multi-Agentic RAG:探索智能问答系统的新边界(含代码)
Multi-Agentic RAG系统是一种强大的智能问答框架,它通过结合多代理系统和检索增强生成技术,为处理复杂问题提供了新的解决方案。原创 2025-01-07 08:15:00 · 1340 阅读 · 0 评论 -
智能新纪元:代理AI的崛起与未来
随着2025年的到来,人工智能(AI)领域正迎来一个既充满激动人心又充满不确定性的新时代。在这个时代,AI的快速发展不仅改变了我们的生活方式,更预示着一场技术革命的到来——代理AI(Agentic AI)的崛起。今天我们一起聊一下代理AI的兴起背景、技术特点、潜在影响以及未来展望,揭示这一新兴技术如何重塑人类与计算机之间的交互方式,并引领我们进入一个全新的智能纪元。原创 2025-01-04 18:00:00 · 1164 阅读 · 0 评论 -
Chain of Agents(COA):大型语言模型在长文本任务中的协作新范式
高效处理长文本:CoA框架通过将长文本分成多个块并并行处理(虽然工作代理之间的通信是顺序的,但每个工作代理的处理是独立的),显著提高了处理速度。CoA通过多个LLM的协作,实现了对长文本的高效处理,为LLM在长文本任务中的应用提供了新的思路。CoA框架的核心思想是将长文本分成多个块,并让每个工作代理处理一个块,然后将处理结果传递给下一个工作代理,形成一条推理链。最后,主代理根据推理链中的信息合成最终响应。通过调整工作代理的数量和类型,以及主代理的合成策略,CoA框架可以灵活地应对各种长文本任务。原创 2025-01-02 14:45:00 · 1457 阅读 · 0 评论 -
Agentic方法减少LLM幻觉:深度解析与实践(文末含代码)
Agentic方法为减少LLM幻觉提供了一种有效的解决方案,并在实际应用中展现出了显著的效果。原创 2025-01-01 08:15:00 · 1228 阅读 · 0 评论 -
构建多代理检索增强生成(Multi-Agent Retrieval-Augmented Generation)系统
多智能体 RAG 系统在构建企业级人工智能应用方面具有巨大潜力,随着人工智能技术和数据管理实践的不断创新,多智能体 RAG 系统将取得更大的发展。未来,不同智能体之间的互操作性将进一步增强,它们能够在不同平台和数据源之间无缝协作。原创 2024-12-25 08:15:00 · 1416 阅读 · 0 评论