
Agent
文章平均质量分 93
大模型之路
这个作者很懒,什么都没留下…
展开
-
MicroAgents 框架,如何实现 LLM 工具调用自由?(含代码)
在LLM实际应用中,如何高效地协调多个语言模型智能体,并实现广泛的工具调用,成为了一个亟待解决的关键问题。MicroAgents框架应运而生,它以其轻量级、灵活性强的特性,为这一难题提供了创新的解决方案。原创 2025-05-10 08:15:00 · 1276 阅读 · 0 评论 -
RASA:LLM系统中实现智能体记忆的认知框架(含代码)
大语言模型(LLMs)和智能体不断进化,已不再局限于简单的响应和输出,而是在推理与行动能力上持续成熟。随着智能体架构的进步,记忆、回忆和知识应用的方式,在系统设计和可信度方面变得愈发关键且复杂。RASA(Role-Aligned Software Architecture,角色对齐软件架构)作为一个创新性的认知框架,为构建具备强大记忆能力、能够灵活适应各种场景的智能体提供了全新的思路和方法。原创 2025-05-09 08:15:00 · 896 阅读 · 0 评论 -
AI Agent评估:指标、策略与最佳实践
AI智能体正逐渐融入到各个领域,从日常的对话助手到复杂的工作流程自动化,其应用范围不断拓展。然而,确保这些智能体能够可靠、高效地完成任务至关重要,这就使得AI智能体评估成为了人工智能发展过程中不可或缺的一环。本文将深入探讨AI智能体评估的指标、策略以及最佳实践,为读者全面解读这一关键领域。原创 2025-05-03 08:15:00 · 890 阅读 · 0 评论 -
如何使用 Python 和 FastAPI 构建带认证的 MCP 服务器(含代码)
曾经只存在于科幻想象中的场景——AI与任何应用程序无缝对接,如今正逐步成为现实。就像API长期作为开发者与软件进行交互的接口一样,模型上下文协议(Model Context Protocol,MCP)正逐渐成为AI智能体以结构化、感知上下文的方式与应用程序交互的首选标准。诸如Anthropic(该协议的创立者)、OpenAI、谷歌等众多AI供应商都在广泛采用这一协议。对于应用程序开发者和维护者而言,用户通过AI智能体而非直接与应用交互的时代已经悄然来临,支持这一转变的关键就在于搭建MCP服务器。原创 2025-05-01 08:15:00 · 717 阅读 · 0 评论 -
AI无边界:通过MCP实现不同智能体框架的协作
在人工智能飞速发展的当下,智能体框架如雨后春笋般不断涌现。从LangChain利用高度抽象的方式构建智能体,到CAMEL - AI为用户提供细致配置选项来创建智能体,不同框架各显神通。但这些框架之间就像说着不同“方言”的个体,彼此沟通困难重重。直到模型上下文协议(Model Context Protocol,MCP)的出现,才为打破这一僵局带来了希望,开启了不同智能体框架协作的新篇章。原创 2025-04-28 08:15:00 · 965 阅读 · 0 评论 -
构建智能多智能体 AI 系统:A2A 与 MCP 的深度剖析与实践指南
从企业复杂业务流程的自动化处理,到智能交互场景的深化拓展,多智能体协作模式展现出了超越单一模型的卓越效能。在这一发展进程中,Agent-to-Agent(A2A)协议和模型上下文协议(Model Context Protocol,MCP)作为两种主流架构方式,各自以独特的设计理念和技术特性,在不同应用场景中发挥着关键作用。深入探究它们的架构细节、技术权衡、实际应用案例以及未来发展趋势,对于企业和开发者构建高效、智能且可持续发展的 AI 系统具有重要意义。原创 2025-04-24 08:15:00 · 1046 阅读 · 0 评论 -
LLM架构实战:用 LangChain 和 LangGraph 打造多智能体研究助手(含代码)
大语言模型(LLM)的应用越来越广泛,从智能客服到内容创作,从数据分析到研究辅助,LLM 正逐渐改变着人们获取信息和解决问题的方式。今天,我们就来深入探讨大语言模型的架构,尤其是单智能体和多智能体架构,并手把手教大家用 LangChain 和 LangGraph 搭建一个多智能体研究助手。原创 2025-04-23 08:15:00 · 2341 阅读 · 0 评论 -
认识谷歌 A2A:将颠覆多智能体 AI 系统的协议
近日谷歌在 Cloud Next 25 大会上开源的 Agent2Agent(A2A)协议,无疑成为了该领域一颗耀眼的新星,引发了广泛关注和热议。这一协议被寄予厚望,有望如同一把神奇的钥匙,开启多智能体 AI 系统高效协作的全新大门,彻底改变当前人工智能应用的格局。原创 2025-04-15 08:15:00 · 910 阅读 · 0 评论 -
AI Agent 评测新利器——OpenAI 开源 PaperBench
评估 AI 的能力成为当下研究的关键领域。其中,AI 对前沿 AI 研究的复制能力评估意义重大,它不仅能衡量 AI 的自主性和研发能力,还能为 AI 的安全发展提供重要参考。在此背景下,PaperBench 基准测试应运而生,为评估 AI 复制 AI 研究的能力提供了全新的视角与方法。原创 2025-04-08 11:06:57 · 798 阅读 · 0 评论 -
探秘 LLM Agents:ReAct 框架藏着哪些惊喜?
ReAct,即 Reasoning and Acting,于 2023 年 3 月在论文 “ReAct: Synergizing Reasoning and Acting in Language Models” 中被提出。它旨在让 LLM 在解决任务时更像人类一样思考和行动。ReAct 框架主要包含三个步骤:推理、行动和观察。当接收到问题时,Agent 首先进行推理,生成解决问题的思路、计划或策略。然后,根据推理结果采取行动,比如搜索信息或与环境进行交互。原创 2025-04-08 11:05:53 · 1097 阅读 · 0 评论 -
如何在 Pydantic AI 智能体中使用 MCP(含代码)
通过上述步骤,成功实现了在 PydanticAI 智能体中使用 MCP 工具,克服了 PydanticAI 原生不支持 MCP 的限制。这一过程不仅深入了解了 MCP 的工作原理和应用方式,还展示了如何通过技术手段解决框架之间的兼容性问题,为开发更强大的 AI 智能体提供了可行的方案。原创 2025-03-20 08:15:00 · 1651 阅读 · 0 评论 -
OpenAI最新发布Agents SDK深度解析:构建智能体的新利器
随着AI技术的不断发展,高级推理、多模态交互等模型能力为AI Agents奠定了坚实的基础。然而,开发者在构建生产级AI Agents(Manus开源复现OpenManus:开源AI Agent框架的深度解析与探索)时,仍然面临着诸多挑战。为了解决这些问题,OpenAI推出了全新的Responses API、三种内置工具以及开源的Agents SDK,旨在帮助开发者更容易地创建能自动完成任务的AI Agents。原创 2025-03-14 08:15:00 · 997 阅读 · 0 评论 -
Manus开源复现OpenManus:开源AI Agent框架的深度解析与探索
系统提示为智能体提供了基本的角色定义和行为准则。通过系统提示,智能体了解自己的身份和任务范围,例如,OpenManus 的系统提示告知智能体它是一个全能的 AI 助手,能够解决用户提出的任何任务,并可以使用各种工具来高效完成复杂请求。这种角色定义为智能体的行为提供了基本框架,使其在与用户交互时能够明确自己的职责和能力边界。原创 2025-03-12 08:15:00 · 1111 阅读 · 0 评论 -
Manus AI:全面概述
Manus AI 作为中国新推出的人工智能,凭借其卓越的性能和创新的技术,在全球人工智能领域引起了广泛关注。本文将对 Manus AI 进行全面深入的探讨,涵盖其公司背景、技术能力、应用场景、战略定位以及未来发展的影响与挑战。原创 2025-03-11 08:15:00 · 813 阅读 · 0 评论 -
基于 DeepSeek 从零构建 ReAct AI 智能体(文末含代码)
传统 AI 系统在处理简单任务时表现出色,它按照预定义逻辑处理输入、分析数据并产生响应。然而,在面对复杂、多步且需要持续调整和外部交互的问题时,传统方法就显得力不从心。例如,回答 “2024 年国际足联金球奖得主出生城市的天气如何” 这类问题,涉及到确定得主、找到其出生地以及查询该地天气等多个步骤,传统 AI 系统难以应对。ReAct AI 智能体则通过引入 “思考→行动→观察” 的循环模式,有效解决了上述问题。原创 2025-02-25 08:15:00 · 1566 阅读 · 0 评论 -
OpenAI Operator:开启智能代理新纪元
OpenAI Operator的推出,标志着AI技术又向前迈进了一大步。它不仅为用户提供了前所未有的便捷与效率,还为企业和公共部门带来了全新的互动和转化机会。尽管目前仍存在一些局限性,但随着技术的不断进步和应用的不断拓展,Operator将在未来发挥更加重要的作用,成为数字生态中不可或缺的一部分。原创 2025-02-23 08:15:00 · 1010 阅读 · 0 评论 -
探索 Hugging Face‘s Smolagents:简化Agent开发的新利器(含代码)
Smolagents,顾名思义,是一个“非常简单的库”,它解锁了语言模型中的智能体能力。在Hugging Face的官方公告博客中,Smolagents被描述为一个能够减少开发者在构建智能体时所需编写的代码量,同时保持灵活性和控制力的工具。智能体,作为AI领域的一个重要概念,其核心在于通过LLMs动态地解决任务。它们需要观察环境、制定计划并执行这些计划,而这一切都离不开一系列复杂的组件。这些组件确保了智能体能够正常运作,同时不会过度消耗API信用和执行时间。原创 2025-02-13 08:15:00 · 1351 阅读 · 0 评论 -
评估多代理(Multi-Agent)系统:深度解析与实践探索
对多代理系统进行评估(Agent-as-a-Judge:AI系统评估新思路)至关重要。从系统性能优化角度看,准确了解系统的优势与不足能够指导开发者针对性地改进代理的设计与协作机制。在资源分配方面,合理的评估有助于确定是否需要增加或调整代理资源。对于用户体验而言,只有经过严格评估的系统才能确保为用户提供高效、准确的服务。本文涉及基于组件的评估(Component-Based Evaluation)和端到端评估(End-to-End Evaluation,E2E)相结合的方法。原创 2025-01-19 08:15:00 · 1376 阅读 · 0 评论 -
Multi-Agentic RAG:探索智能问答系统的新边界(含代码)
Multi-Agentic RAG系统是一种强大的智能问答框架,它通过结合多代理系统和检索增强生成技术,为处理复杂问题提供了新的解决方案。原创 2025-01-07 08:15:00 · 1263 阅读 · 0 评论 -
智能新纪元:代理AI的崛起与未来
随着2025年的到来,人工智能(AI)领域正迎来一个既充满激动人心又充满不确定性的新时代。在这个时代,AI的快速发展不仅改变了我们的生活方式,更预示着一场技术革命的到来——代理AI(Agentic AI)的崛起。今天我们一起聊一下代理AI的兴起背景、技术特点、潜在影响以及未来展望,揭示这一新兴技术如何重塑人类与计算机之间的交互方式,并引领我们进入一个全新的智能纪元。原创 2025-01-04 18:00:00 · 1137 阅读 · 0 评论 -
Chain of Agents(COA):大型语言模型在长文本任务中的协作新范式
高效处理长文本:CoA框架通过将长文本分成多个块并并行处理(虽然工作代理之间的通信是顺序的,但每个工作代理的处理是独立的),显著提高了处理速度。CoA通过多个LLM的协作,实现了对长文本的高效处理,为LLM在长文本任务中的应用提供了新的思路。CoA框架的核心思想是将长文本分成多个块,并让每个工作代理处理一个块,然后将处理结果传递给下一个工作代理,形成一条推理链。最后,主代理根据推理链中的信息合成最终响应。通过调整工作代理的数量和类型,以及主代理的合成策略,CoA框架可以灵活地应对各种长文本任务。原创 2025-01-02 14:45:00 · 1397 阅读 · 0 评论 -
Agentic方法减少LLM幻觉:深度解析与实践(文末含代码)
Agentic方法为减少LLM幻觉提供了一种有效的解决方案,并在实际应用中展现出了显著的效果。原创 2025-01-01 08:15:00 · 1126 阅读 · 0 评论 -
构建多代理检索增强生成(Multi-Agent Retrieval-Augmented Generation)系统
多智能体 RAG 系统在构建企业级人工智能应用方面具有巨大潜力,随着人工智能技术和数据管理实践的不断创新,多智能体 RAG 系统将取得更大的发展。未来,不同智能体之间的互操作性将进一步增强,它们能够在不同平台和数据源之间无缝协作。原创 2024-12-25 08:15:00 · 1377 阅读 · 0 评论 -
LlamaIndex工作流详解:提升数据处理效率的关键
工作流(Workflow)是事件驱动、基于步骤的应用执行流程控制方式。它由多个步骤(steps)组成,每个步骤负责处理特定类型的事件并发出新的事件。这种设计使得工作流能够灵活地处理各种应用场景,从简单的单一步骤流程到复杂的、包含多个分支和循环的多步骤流程。在LlamaIndex中,工作流通过子类化Workflow类并定义具体的步骤来实现。每个步骤使用@step装饰器装饰,该装饰器用于推断每个步骤的输入和输出类型,从而确保工作流的有效性和正确性。原创 2024-12-23 12:09:11 · 1083 阅读 · 0 评论 -
AI Agent 框架综述:智能自主性的崛起与多领域应用
AI Agent (Multi-Agent架构:探索AI协作的新纪元)可被视作基于人工智能技术构建的智能实体,具备感知环境、理性决策及自主行动的能力,旨在高效达成预设目标。其核心特质在于自主性,可在复杂多变的环境中独立规划任务路径、灵活调配资源并精准执行操作,有效降低对人类持续干预的依赖。以智能客服 Agent 为例,其能实时解析用户咨询意图,自主检索海量知识库,迅速提供精准解答,在多轮交互中持续优化服务策略,充分展现出自主应变能力。原创 2024-12-16 08:15:00 · 1502 阅读 · 0 评论 -
利用 Pydantic AI Agent 框架构建可靠的生成式 AI 应用
Pydantic 是一个用于轻松验证和解析数据的 Python 库,其核心功能在于确保数据的准确性以及遵循预期的结构,这在处理诸如 JSON 文件、用户数据或 API 响应等外部输入时显得尤为关键。它摒弃了手动编写每个字段检查(如 “这是一个整数吗?这个字符串是否过长?”)的繁琐方式,而是借助模型实现自动化检查。原创 2024-12-14 08:15:00 · 2019 阅读 · 0 评论 -
多代理 AI 中的策略遵守性:安全性与合规性的深度剖析
随着人工智能从集中式向分布式多代理 AI 范式转变,其在带来创新与高效的同时,策略遵守性、安全性和合规性面临诸多挑战。本文深入探讨多代理 AI 系统中确保策略遵守的关键要素,包括代理的自主性、协调机制以及反馈循环等,分析如何在不同成熟度阶段平衡创新与合规需求,同时阐述组织应采取的策略,如实施政策防护栏、优化多代理协调和采用强化学习等,以保障系统安全、合规运行,实现与组织目标的一致,推动多代理 AI 技术在各行业的可持续发展。原创 2024-12-12 23:30:32 · 1220 阅读 · 0 评论 -
AI Agent 指南:架构、构建与部署
当下AI Agent 正崭露头角,重塑着我们与技术交互的模式。它犹如一位智能助手,凭借独立推理、规划及自主行动能力,在无需用户持续干预的情况下,精准达成既定目标。从智能客服自动处理客户咨询,到智能投资顾问自主制定投资策略,AI Agent 的应用场景不断拓展,深度融入生活与工作的诸多方面,成为推动智能化变革的关键力量。深入探究 AI Agent 的工作原理、设计准则、基础设施需求以及构建部署流程,对于解锁其潜能、引领创新应用意义深远。原创 2024-12-04 23:15:21 · 1999 阅读 · 0 评论 -
API 集成的新时代:AI Agents的崛起与挑战
AI Agents引领的 API 集成变革浪潮虽面临性能、可靠性与成本等挑战,但为开发人员开启了便捷之门,带来集成灵活性与用户体验质的飞跃。随着技术演进,AI 代理有望重塑 API 生态,成为构建智能软件系统核心驱动力。原创 2024-12-04 14:06:02 · 1150 阅读 · 0 评论 -
多代理编排(Multi-Agent Orchestration):构建智能协作系统的关键技术
多代理编排涉及对多个自主代理的协调,以达成共同的目标。在一个多代理系统中,每个代理都拥有独特的能力和角色。例如,在一个智能客服系统中,可能有专门负责解答常见问题的代理,也有处理复杂技术问题的代理,还有负责引导客户流程的代理等。这些代理虽然各自独立,但通过有效的编排,它们能够协同工作,共同为客户提供全面、高效的服务。与传统的单代理系统相比,多代理系统的优势在于其能够处理更为复杂的任务。复杂问题往往可以分解为多个子问题,每个子问题由最适合的代理来解决。原创 2024-12-02 16:03:07 · 1476 阅读 · 0 评论 -
利用OpenAI、LangChain和Streamlit进行智能数据分析和可视化
通过 OpenAI、LangChain 和 Streamlit 的有机结合,我们成功构建了一个智能数据分析与可视化系统。该系统在降低数据分析门槛、提高数据处理效率和可视化效果方面展现出显著优势,为企业和研究人员提供了一种便捷、高效的数据探索和决策支持工具。原创 2024-12-02 08:30:00 · 1280 阅读 · 0 评论 -
OpenAI Swarm:探索多智能体(Agent)系统的新框架
OpenAI 的 Swarm 框架是一个具有探索价值的多智能体(Agent)系统框架原创 2024-11-30 08:38:27 · 1369 阅读 · 0 评论 -
Agent-as-a-Judge:AI系统评估新思路
Agent-as-a-Judge 框架是 AI 系统评估方法的重大突破。它克服了传统评估方法的缺陷,通过智能体评估智能体,在任务解决过程中提供丰富动态反馈,具有成本效益高、可扩展性强等优势。原创 2024-11-30 08:20:17 · 963 阅读 · 0 评论 -
利用 Lyzr Agent API与 FastAPI 实现 GitHub 拉取请求自动化管理
Lyzr Agent API 是一款为开发者和企业量身定制的强大工具,旨在快速、高效地构建、部署和管理自主人工智能代理。其具有诸多显著特点:快速部署:用户无需深厚的开发知识,短短几分钟内即可构建并定制 AI 代理,极大缩短了开发周期。低代码平台:支持低代码方式,使用户能够轻松选择工作流程、动作和响应,降低了开发门槛。无缝集成:与现有的诸如客户关系管理系统(CRM)和数据源等平台完美融合,优化了操作流程。数据隐私:通过提供私有云或本地部署选项,有效防止数据泄露,高度重视数据安全。原创 2024-11-29 17:30:48 · 833 阅读 · 0 评论