图像处理我是这样入门的------我的第一篇csdn博文

接触图像处理已经有五个月了,自认为已经算是入门了吧大笑。以下分享个人的一些经验微笑


图像处理的库有很多,例如OpenCVhalconOpenGLMATLAB库、IntelIPP等。OpenCV具有开源,免费,跨平台、可移植性强等优点,得到了较为广泛的应用。另外MATLAB也提供了众多的图像处理的函数,也可以用来做视觉项目。初学者学习OpenCVMatlab图像处理较好,我个人推荐更加推荐学习OpenCV

 

学习OpenCV图像处理应该具有的一些条件:

c/c++基础

一些线性代数知识

一些概率统计知识

一些微积分知识

一些傅里叶变换知识

一定的英语阅读水平

以上条件要求并不是什么严格,因为入门OpenCV视觉编程还不需要太强的编程能力和数学功底,当然如果你较好的数学功底和编程能力,那上手OpenCV就更加易如反掌。

 

工欲善其事,必先利其器。器欲尽其能,必先得其法。入门前工具的准备是十分重要的,这里推荐毛星云的《OpenCV3编程入门》作为入门阅读书籍,推荐使用VisualStudio 2013OpenCV2.4.9练习书上的代码。VisualStudio 2013OpenCV2.4.9的设置,可参考此页面:http://blog.csdn.net/ccj5351/article/details/24949881。值得注意的是,OpenCV2OpenCV3的区别很小,但这两者和OpenCV1的差异很大,推荐使用较新的OpenCV版本(OpenCV2OpenCV3)均可,因为新的版本意味着更好的性能,更加容易上手。

 

准备好《OpenCV3编程入门》和安装好上述工具后,即可根据书上的内容学习视觉编程了,在书上你可以学习很多生动有趣的知识了。这里注意一点,这本书名为OpenCV3编程,实际上也是完全兼容OpenCV2的。这一步的学习建议把握好时间,不宜花费太多时间钻研书上的内容。应该尽可能快地过一篇书上的内容,如果你的编程基础(指的是C++的编程水平)好的话,甚至可以挑选少量的例子亲手上机操作即可。如果你的编程基础不太好的话,需要花多点时间练习书上的代码,边练习编程边学习图像处理知识。

 

学习完《OpenCV3编程入门》,你可能会有一种有力但是却使不上劲的感觉,这是因为你的内功尚未修炼好。对于学习图像处理来说,单单看《OpenCV3编程入门》是不够的,这本书更像是一本OpenCV的实例操作书,要系统地学习图像处理,要修好内功打出好功夫,还需要系统地学习图像处理的知识。

 

关于系统地去学习图像处理,推荐大名鼎鼎的冈萨雷斯的《数字图像处理第三版》和《数字图像处理的MATLAB实现》,这两本书可谓是学习图像处理经典书籍。书上系统地介绍了图像处理的知识:如

图像的增强与复原

图像空间滤波和频域滤波

图像几何变换

图像形态学

图像分割等

 

《数字图像处理第三版》详细介绍了图像处理中的数学原理,数学模型。《数字图像处理的MATLAB实现》侧重于用MATLAB去实现《数字图像处理第三版》的算法。例外,这一部分的学习也推荐左飞的《数字图像处理原理和实践(MATLAB版)》,这本书也写得不错。

 

以上内容都涉及之后,就算是入门了图像处理了。(我个人觉得)。到了这一步,你应该可以用OpenCV或者MATLAB编写一些程序了。值得一提的是,OpenCV也提供了Python接口,可以用Python语言写OpenCV代码。另外,如果你想写一些界面的话,推荐使用简单易上手的Qt,最好不要去学MFC,这实在是一个大坑。

 

欲穷千里目,更上一层楼。对于如何进阶,可以参照此页面:https://www.cnblogs.com/tenderwx/p/6441185.html

 

一些总结和书籍推荐

OpenCV3编程入门》------opencv入门利器,要学他得懂点c++的知识

《数字图像处理第三版》、《数字图像处理的MATLAB实现》------系统地学习数字图像处理的书籍

《数字图像处理原理和实践(MATLAB版)》------和冈萨雷斯的《数字图像处理MATLAB实现》差不多,更加容易理解,但深度和严谨性不及后者

Python计算机视觉》------利用Python写图像处理代码,书的最后章节介绍了用python调用opencv

 

 

参考资料:

[1]左右shawn.图像处理库综述[DB/OL].http://blog.csdn.net/x454045816/article/details/52097224, 2016-8-2

[2] GloryofFamiliy. OpenCV2.4.9OpenCV2.4.9VisualStudio 2013下的配置. http://blog.csdn.net/ccj5351/article/details/24949881

[3] 白马负金羁.图像处理与机器视觉网络资源收罗.http://blog.csdn.net/baimafujinji/article/details/32332079

 

 

发布了3 篇原创文章 · 获赞 2 · 访问量 4408
展开阅读全文

AI 图像识别项目从入门到上线

06-12

#### **课程介绍** 本课程是一个完整的项目实战课程,从项目调研开始到项目最终上线,完整的复现了基于深度学习的实战项目的流程。 本课程系列文章具有很强的工程性质,同时内容追求循序渐进,建议从头开始学习。 - 第 01~02 课,将讲述如何调研一个项目,如何获取数据与整理数据。 - 第 03~05 课,将介绍 Linux、图像、Python 等开源包,以及神经网络的基础知识,为接下来的项目做准备。 - 第 06~08 课,将介绍目前 3 大用户量最大的深度学习开源平台,将讲述准备数据、定义网络、训练模型、使用模型测试自己的图片的整个流程。 - 第 09~11 课,将集中讲解如何训练模型并进行迭代优化。 - 第 12~14 课,我们将把训练出来的模型部署到微信小程序上,同时介绍小程序的前、后端的基础技术。 认真学完这个系列文章之后,将会深入理解一个基于深度学习的项目是如何从一个想法变为一个真正产品的。对于欲转行的人来说,它提供了一个完整的学习链,学习完之后将直接具有从事该行业的基本能力。对于已经是相关从业人员来说,可以作为一个知识和经验的补充。 #### **专家推荐** 本课程是基于深度学习的图像项目开发实践课程。作者提供了一个非常完整的从深度学习理论、实践到工业级生产的链条。既有基础的代码与图像知识,深度学习入门理论、基于 Python 的几大主流开源框架的使用;又有实际项目开发中调研立项,从需求分析到实际业务模型的训练与迭代,最终到模型部署、小程序的前后端开发。本课程非常适合深度学习初学者作为入门,也适用于需要进一步巩固深度学习技能的从业者,十分推荐! —— 陈强,360 人工智能研究院科学家 #### **作者介绍** 龙鹏,6 年计算机视觉项目从业经验,华中科技大学本科,中国科学院硕士,原 360 图像搜索,人工智能研究院算法工程师,今陌陌深度学习实验室算法工程师,拥有个人技术公众号《与有三学 AI》,曾在 GitChat 开设过《AI 程序员码说摄影图像基础》课程。 参与过图像增强降噪、自动驾驶、视频内容分析、人脸表情与 Parsing 等项目,并熟悉传统图像处理算法基础知识,拥有丰富的基于机器学习的计算机视觉项目经验。

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览