目标分割
文章平均质量分 85
四平先森
图像算法工程师,研究方向:深度学习、计算机视觉
展开
-
瑞芯微RK3588 C++部署Yolov8检测和分割模型
Docker容器主要用来进行模型转换,也就是pt转onnx的过程,因此docker中需要用的的包主要是rockchip-yolov8,需要修改该代码,进行模型的转换,在linux服务器上安装docker环境,创建一个ubuntu系统的docker环境。,C++的部署的代码参考的里面都有,我自己这边只是根据自己的项目做了集成,如有需要可私信。这一部分的修改代码参考山水无移大哥的部署过程,贼清洗,膜拜一下,少走了很多弯路,直接贴上。(3)yolov8_onnx2rknn:在(2)的基础上转检测rknn模型。原创 2024-03-04 17:50:50 · 4269 阅读 · 8 评论 -
深度学习模型之yolov8实例分割模型TesorRT部署-python版本
1.模型转换从github上下载官方yolov8版本,当前使用的版本是2023年9月份更新的版本,作者一直在更新。官网地址2.加载模型模型的训练和测试在官方文档上,有详细的说明,yolov8中文文档这里不做过多说明,v8现在训练是真的方便了,环境部署好之后,几行代码就跑起来了,例如:from ultralytics import YOLOfrom setproctitle import setproctitlesetproctitle("python|yolov8-seg 20231211")原创 2024-01-18 17:08:48 · 1276 阅读 · 2 评论