tensorflow
文章平均质量分 95
四平先森
图像算法工程师,研究方向:深度学习、计算机视觉
展开
-
记录一下Tensorflow下实现DCNN的迁移学习(即冻结固定层,只训练某几层)
1.基本概念:迁移学习是在已经训练好的模型下,恢复这些训练好的模型参数到我们的新模型中,新模型使用的数据集一般比较少时,我们可以根据新数据集与原数据集的相似程度,数据规模大小等冻结网络的某几个卷积层,只训练最后的全连接层或者平均池化层,加快了训练速度,同时提升模型的泛化能力。2.主要思路:(1)准备基模型首先需要一个提前训练好的模型文件。这里是我的文件目录。我们称为“基模型”。(2)查询变量查询变量的作用域并保存这个基模型的所有参数。方便后期迁移学习后对比模型的参数是否发生变化,是否按照我们冻原创 2020-11-28 10:12:52 · 2471 阅读 · 4 评论 -
关于深度卷积神经网络训练过程中一开始准确率就是1的问题
最近在利用DCNN模型训练自己的数据集,利用SS数据集进行测试,做二分类,结果刚开始训练模型的准确率就为1,后面也是这样,主要原因还是数据集打乱的还不够,不能只靠tensorflow的shuffle操作来打乱,最好先打乱顺序后制作好tfrecords文件,再用shuffle函数打乱一次。主要步骤如下:(1)找到SS标签文件(2)制作TFRecords文件(3)开始训练关于制作TFRecords文件:制作TFrecords文件代码如下:import tensorflow as tf# 7,8原创 2020-10-13 20:26:53 · 7283 阅读 · 2 评论 -
tensorflow一个文件中执行多个计算图,加载多个模型。
1.需要解决的问题:在一个py文件中同时加载多个训练好的CNN模型文件,并输出多个模型的识别结果。2.解决思路(1)创建多个计算图,在多个会话中执行。(为了是逻辑清晰,这里没有简化代码,因为一个图可以在多个sess中运行,一个sess也能运行多个图)(2)由于多个计算图的执行是相互独立的,所以,可以分别进行每个模型的加载与识别。(3)将识别结果保存到一个csv文件中。3.实现–以三个模型为例(1)创建三个计算图,使用 g = tf.Graph()函数创建新的计算图。(2)在with g.as原创 2020-08-06 17:51:44 · 1287 阅读 · 5 评论 -
PyQt多线程使用
链接https://blog.csdn.net/weixin_42066185/article/details/81462977?utm_source=blogxgwz1这篇博客讲解很详细。原创 2020-07-17 18:38:17 · 2457 阅读 · 1 评论 -
ValueError: Cannot feed value of shape (10,) for Tensor ‘Placeholder_1:0‘, which has shape ‘(?, 2)‘
出现这个问题的原因是图片image和标签label的维度不匹配,也就是在取出数据的时候没用进行维度的归一化。如下代码种:def read_and_decode(filename,Image_height,Image_width,Image_channel,Batch_size,isTrain): # 创建文件名队列并读取 filename_queue = tf.train.string_input_producer([filename]) # 内存队列不需要创建,直接使用read原创 2020-07-23 18:52:11 · 1935 阅读 · 0 评论 -
图像识别使用sim模块报错:disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REU
错误提示:Variable fc2/weights already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at:最近在使用tensorflow的slim模块优化深度学习的代码,集成在django网站中。上传图片时,报错。具体...原创 2020-04-28 22:53:49 · 384 阅读 · 1 评论