1、颜色识别跟踪
import cv2
import numpy as np
frameWidth = 640
frameHeight = 480
cap = cv2.VideoCapture(1)
cap.set(3, frameWidth)
cap.set(4, frameHeight)
cap.set(10, 150)
myColors = [[5, 107, 0, 19, 255, 255],
[133, 56, 0, 159, 156, 255],
[57, 76, 0, 100, 255, 255],
[90, 48, 0, 118, 255, 255]]
myColorValues = [[51, 153, 255], # BGR
[255, 0, 255],
[0, 255, 0],
[255, 0, 0]]
myPoints = [] # [x , y , colorId ]
def findColor(img, myColors, myColorValues):
imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
count = 0
newPoints = []
for color in myColors:
lower = np.array(color[0:3])
upper = np.array(color[3:6])
mask = cv2.inRange(imgHSV, lower, upper)
# 函数很简单,参数有三个
# 第一个参数:imgHSV指的是原图
# 第二个参数:lower指的是图像中低于这个lower的值,图像值变为0
# 第三个参数:upper指的是图像中高于这个upper的值,图像值变为0
# 而在lower~upper之间的值变成255
x, y = getContours(mask)
cv2.circle(imgResult, (x, y), 15, myColorValues[count], cv2.FILLED)
if x != 0 and y != 0:
newPoints.append([x, y, count])
count += 1
# cv2.imshow(str(color[0]),mask)
return newPoints
def getContours(img):
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
x, y, w, h = 0, 0, 0, 0
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 500:
# cv2.drawContours(imgResult, cnt, -1, (255, 0, 0), 3)
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
x, y, w, h = cv2.boundingRect(approx)
return x + w // 2, y
def drawOnCanvas(myPoints, myColorValues):
for point in myPoints:
cv2.circle(imgResult, (point[0], point[1]), 10, myColorValues[point[2]], cv2.FILLED)
while True:
success, img = cap.read()
imgResult = img.copy()
newPoints = findColor(img, myColors, myColorValues)
if len(newPoints) != 0:
for newP in newPoints:
myPoints.append(newP)
if len(myPoints) != 0:
drawOnCanvas(myPoints, myColorValues)
cv2.imshow("Result", imgResult)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
2、文档扫描