参考:链接
介绍
使用DataFrame的plot方法绘制图像会按照数据的每一列绘制一条曲线,默认按照列columns的名称在适当的位置展示图例,比matplotlib绘制节省时间,且DataFrame格式的数据更规范,方便向量化及计算。
DataFrame.plot( )函数:
DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False,
sharex=None, sharey=False, layout=None, figsize=None,
use_index=True, title=None, grid=None, legend=True,
style=None, logx=False, logy=False, loglog=False,
xticks=None, yticks=None, xlim=None, ylim=None, rot=None,
fontsize=None, colormap=None, position=0.5, table=False, yerr=None,
xerr=None, stacked=True/False, sort_columns=False,
secondary_y=False, mark_right=True, **kwds)
注意:每种绘图类型都有相对应的方法
主要参数详细解释
官网:http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.html
Eg.hexbin蜂巢图:http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.hexbin.html
源码:https://github.com/pandas-dev/pandas/blob/v0.24.2/pandas/plotting/_core.py#L2912-L3605
- x : label or position, default None#指数据列的标签或位置参数
- y : label, position or list of label, positions, default None
- kind : str#绘图类型
‘line’ : line plot (default)#折线图
‘bar’ : vertical bar plot#条形图。stacked为True时为堆叠的柱状图
‘barh’ : horizontal bar plot#横向条形图
‘hist’ : histogram#直方图(数值频率分布)
‘box’ : boxplot#箱型图
‘kde’ : Kernel Density Estimation plot#密度图,主要对柱状图添加Kernel 概率密度线
‘density’ : same as ‘kde’
‘area’ : area plot#与x轴所围区域图(面积图)。Stacked=True时,每列必须全部为正或负值,stacked=False时,对数据没有要求
‘pie’ : pie plot#饼图。数值必须为正值,需指定Y轴或者subplots=True
‘scatter’ : scatter plot#散点图。需指定X轴Y轴
‘hexbin’ : hexbin plot#蜂巢图。需指定X轴Y轴
- ax : matplotlib axes object, default None#子图(axes, 也可以理解成坐标轴)
要在其上进行绘制的matplotlib subplot对象。如果没有设置,则使用当前matplotlib
subplot其中,变量和函数通过改变figure和axes中的元素(例如:title,label,点和线等等)一起描述figure和axes,也就是在画布上绘图。 - subplots : boolean, default False#是否对列分别作子图
- sharex : boolean, default True if ax is None else
False#如果ax为None,则默认为True,否则为False
In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure!
- sharey : boolean, default False#如果有子图,子图共y轴刻度,标签
In case subplots=True, share y axis and set some y axis labels to invisible
layout : tuple (rows, columns) for the layout of subplots#子图的行列布局
- figsize : a tuple (width, height) in inches#图片尺寸大小
- use_index : boolean, default True#默认用索引做x轴
- title : string#图片的标题用字符串
Title to use for the plot
- grid : boolean, default None#图片是否有网格
- legend : False/True/’reverse’#子图的图例 (默认为True)
- style : list or dict#对每列折线图设置线的类型
- logx : boolean, default False#设置x轴刻度是否取对数
- logy : boolean, default False
- loglog : boolean, default False#同时设置x,y轴刻度是否取对数
- xticks : sequence#设置x轴刻度值,序列形式(比如列表)
对图无影响,只是改变坐标轴,如何改坐标轴的刻度Eg.转化为文字?
- yticks : sequence#设置y轴刻度,序列形式(比如列表)
- xlim : float/2-tuple/list#设置坐标轴的范围。数值(最小值),列表或元组(区间范围)
- ylim : float/2-tuple/list
- rot : int, default None#设置轴标签(轴刻度)的显示旋转度数
X轴刻度旋转,Y轴呢?
- fontsize : int, default None#设置轴刻度的字体大小
- colormap : str or matplotlib colormap object, default None#设置图的区域颜色
- colorbar : boolean, optional #柱子颜色
If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)
- position : float #条形图的对齐方式,取值范围[0,1],即左下端到右上端默认0.5(中间对齐)
- layout : tuple (optional) #布局。layout=(2, 3)两行三列,layout=(2,
-1)两行自适应列数
Eg. df.plot(subplots=True, layout=(2, -1), sharex=False)
- table : boolean, Series or DataFrame, default False
#图下添加表。如果为True,则使用DataFrame中的数据绘制表格,并且数据将被转置以满足matplotlib的默认布局。。 - yerr : DataFrame, Series, array-like, dict and str
See Plotting with Error Bars for detail.
- xerr : same types as yerr.
- stacked : boolean, default False in line and bar plots, and True in
area plot. If True, create stacked plot. #前面有介绍 - sort_columns : boolean, default False #对列名称进行排序以确定绘图顺序
- secondary_y : boolean or sequence, default False #设置第二个y轴(右辅助y轴)
Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis
- mark_right : boolean, default True
When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend
其他说明
其他参数
- color:颜色
- s:散点图大小
- 散点图中参数c,s组合使用目的?
设置X、Y轴名称
ax.set_ylabel(‘yyy’)
ax.set_xlabel(‘xxx’)
plt.legend(loc=‘best’)
- loc:图列位置
其他画图步骤
1)首先定义画图的画布:fig = plt.figure( )
2)然后定义子图ax ,使用 ax= fig.add_subplot( 行,列,位置标)
3)用 ax.plot( )函数或者 df.plot(ax = ax)
4)结尾加plt.show()
举例
官方例子:http://pandas.pydata.org/pandas-docs/version/0.18.1/visualization.html
主次Y轴及图例位置secondary_y
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
# ts = ts.cumsum()
df =pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
print(df)
# 图1:其中A图用左Y轴标注,B图用右Y轴标注,二者共用一个X轴
df.A.plot()#对A列作图,同理可对行做图
df.B.plot(secondary_y=True, style='g')#设置第二个y轴(右y轴)
# 图2
ax = df.plot(secondary_y=['A', 'B'])# 定义column A B使用右Y轴。ax(axes)可以理解为子图,也可以理解成对黑板进行切分,每一个板块就是一个axes
# ax = df.plot(secondary_y=['A', 'B'], mark_right=False)#上一行默认图列会显示(right), mark_right=False即关闭显示
ax.set_ylabel('CD scale')
ax.right_ax.set_ylabel('AB scale')
ax.legend(loc='upper left') #设置图例的位置
ax.right_ax.legend(loc='upper right')
# ax.legend(loc='1')
# plt.legend(loc='2')zhem
# 展示
plt.show()
箱型图颜色及横向分布vert
df = DataFrame([[1,2,3],[2,3,4],[3,4,2],[4,6,1],[5,8,8],],columns=['A','B','C'],index = np.arange(1,6))
colorDic = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', caps='Gray')
df.plot(kind='box',color=colorDic, sym='r+' ,vert=False)
plt.show()
X轴为时间时的良好展示
# 参数x_compat=True实现:
ts = Series(np.random.randn(1000), index=pd.date_range('1/1/2000',periods=1000))
df = DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
# df.A.plot()
df.A.plot(x_compat=True)
plt.show()
多组图形
方法一
df = pd.DataFrame(np.random.randn(1000, 4), index=pd.date_range('1/1/2000',periods=1000), columns=list('ABCD'))
df = df.cumsum()
with pd.plotting.plot_params.use('x_compat', True): #方法一
df.A.plot(color='r')
df.B.plot(color='g')
df.C.plot(color='b')
plt.show()
方法二
df = DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
ax = df.plot.scatter(x='a', y='b', color='DarkBlue', label='Group 1');
df.plot.scatter(x='c', y='d', color='Red', label='Group 2', ax=ax,s=100); #方法二ax,s控制点的大小
plt.show()
自定义图片布局ax
方法一
fig, axes = plt.subplots(4, 4, figsize=(6, 6))
plt.subplots_adjust(wspace=0.5, hspace=0.5)
target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]
target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]
df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False)
(-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False)
方法二
fig, axes = plt.subplots(nrows=2, ncols=2)
df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A')
df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B')
df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C')
df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D')
误差线xerr/yerr
# Generate the data
ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']], names=['letter', 'word'])
df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3)
# Group by index labels and take the means and standard deviations for each group
gp3 = df3.groupby(level=('letter', 'word'))
means = gp3.mean()
errors = gp3.std()
means.plot.bar(yerr=errors,rot=45)
plt.show()
色彩colormap
df = pd.DataFrame(np.random.randn(1000, 10), index=range(1,1001))
df = df.cumsum()
df.plot(colormap='cubehelix')#色彩暗淡,类型多
# df.plot(colormap='gist_rainbow')#色彩艳丽,类型多(建议使用)
# df.plot(colormap='prism')#色彩艳丽,六个颜色循环
plt.show()
#其他绘图类型Greens、……
colormap这个类当中的函数用法见http://matplotlib.org/api/cm_api.html
colormap所能够用到的颜色见http://scipy.github.io/old-wiki/pages/Cookbook/Matplotlib/Show_colormaps
填充线fill_between
price = pd.Series(np.random.randn(150).cumsum(), index=pd.date_range('2000-1-1', periods=150, freq='B'))
ma = price.rolling(20).mean()
mstd = price.rolling(20).std()
plt.plot(price.index, price, 'k')
plt.plot(ma.index, ma, 'b')
plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
plt.show()
参考网址
4、官网举例