(三)如何在GPU上运行

1、判断GPU是否可用torch.cuda.is_available()

device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

2、把模型参数和input数据转换成cuda支持的数据类型 

model.to(device)
x_true.to(device)

3、在GPU上计算结果也为cuda的数据类型,需要转化为numpy或者torch的cpu的tensor类型

predict=predict.cpu().detach().numpy()

detach()的效果和data的类似,但是detach()是深拷贝;data是取值,是浅拷贝。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值