5.1 时间上下文信息
5.1.1 时间效应简介
1)用户兴趣是变化的
2)物品也是有生命周期的
3)季节效应
5.1.3 系统时间特性的分析
在给定数据集后,可以通过统计如下信息研究系统的时间特性:
1)数据集每天独立用户数的增长情况
2)系统的物品变化情况
3)用户访问情况
物品的生存周期和系统的时效性:
1)物品平均在线天数
如果一个物品在某天被至少一个用户产生过行为,就定义该物品在这一天在线。物品的平均在线天数和物品的流行度应该成正比。
2)相隔T天系统物品流行度向量的平均相似度
相似度大,说明系统的物品在相隔T天的时间内没有发生大的变化。相反,说明变化大,从而说明系统的时效性很强,物品的平均在线时间短很短。
5.1.4 推荐系统的实时性:实时响应用户的新行为
5.1.5 推荐算法的时间多样性:推荐系统每天推荐结果的变化程度被定义为推荐系统的时间多样性。
提高推荐结果的时间多样性需要分两步解决:
1)首先,需要保证推荐系统能够在用户有了新的行为后及时调整推荐结果,使推荐结果满足用户最近的兴趣。
(1)从推荐系统的实时性考虑。
(2)即使是实时推荐系统,由于使用的算法不同,也具有不同的时间多样性。
2)其次,需要保证推荐系统在用户没有新的行为时也能够经常变化一下结果,具有一定的时间多样性。
如果没有用户行为,如何保证给用户的推荐结果具有一定的时间多样性呢?一般的思路有以下几种:
1)在生成推荐结果时加入一定的随机性。
2)记录用户每天看到的推荐结果,然后在每天给用户进行推荐时,对他前几天看到过很多次的推荐结果进行适当地降权。
3)每天给用户使用不同的推荐算法。
5.1.6 时间上下文推荐算法
1、最近最热门
2、时间上下文相关的ItemCF算法
3、时间上下文相关的UserCF算法
可以在两个方面利用时间信息改进UserCF算法:
1)用户兴趣相似度
2)相似兴趣用户的最近行为
5.1.7 时间段图模型
5.2 地点上下文信息
基于位置的推荐算法:
1)兴趣本地化:不同地方的用户兴趣存在很大的差别
2)活动本地化:一个用户往往在附近的地区活动