《推荐系统实践》第5章利用上下文信息 学习笔记

博客介绍了推荐系统中的时间和地点上下文信息。时间上下文方面,涉及时间效应、系统时间特性分析、推荐系统实时性、时间多样性及相关算法等;地点上下文方面,阐述了基于位置的推荐算法,包括兴趣本地化和活动本地化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5.1 时间上下文信息

5.1.1 时间效应简介
1)用户兴趣是变化的
2)物品也是有生命周期的
3)季节效应
5.1.3 系统时间特性的分析
在给定数据集后,可以通过统计如下信息研究系统的时间特性:
1)数据集每天独立用户数的增长情况
2)系统的物品变化情况
3)用户访问情况

物品的生存周期和系统的时效性:
1)物品平均在线天数
如果一个物品在某天被至少一个用户产生过行为,就定义该物品在这一天在线。物品的平均在线天数和物品的流行度应该成正比。
2)相隔T天系统物品流行度向量的平均相似度
相似度大,说明系统的物品在相隔T天的时间内没有发生大的变化。相反,说明变化大,从而说明系统的时效性很强,物品的平均在线时间短很短。

5.1.4 推荐系统的实时性:实时响应用户的新行为
5.1.5 推荐算法的时间多样性:推荐系统每天推荐结果的变化程度被定义为推荐系统的时间多样性。
提高推荐结果的时间多样性需要分两步解决:
1)首先,需要保证推荐系统能够在用户有了新的行为后及时调整推荐结果,使推荐结果满足用户最近的兴趣。
(1)从推荐系统的实时性考虑。
(2)即使是实时推荐系统,由于使用的算法不同,也具有不同的时间多样性。
2)其次,需要保证推荐系统在用户没有新的行为时也能够经常变化一下结果,具有一定的时间多样性。

如果没有用户行为,如何保证给用户的推荐结果具有一定的时间多样性呢?一般的思路有以下几种:
1)在生成推荐结果时加入一定的随机性。
2)记录用户每天看到的推荐结果,然后在每天给用户进行推荐时,对他前几天看到过很多次的推荐结果进行适当地降权。
3)每天给用户使用不同的推荐算法。

5.1.6 时间上下文推荐算法
1、最近最热门
2、时间上下文相关的ItemCF算法
3、时间上下文相关的UserCF算法
可以在两个方面利用时间信息改进UserCF算法:
1)用户兴趣相似度
2)相似兴趣用户的最近行为

5.1.7 时间段图模型

5.2 地点上下文信息

基于位置的推荐算法:
1)兴趣本地化:不同地方的用户兴趣存在很大的差别
2)活动本地化:一个用户往往在附近的地区活动

内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值