POJ 2135 Farm Tour(最小费用最大流模板题)

http://poj.org/problem?id=2135

题意很简单,就是给出m条无向边,你要从1到n,然后从n回到1,要求走过的路不能再走,问这样走的最少时间是多少。

一开始我很愚蠢的用正反网络流来跑,这样是错误的。因为这样就没有退流了。

正解:设置一个超级源点0和一个超级汇点n+1,0到1的流量为2,花费为0,n+1到n的流量为2,花费为0.然后我们要求从0到n+1求最小费用,套板子即可。

而且可以注意到,因为一条边只能走一次,所以我们把每条边的流量都设置为1即可。

那么他是无向图,我们怎么增加边呢?

对于单纯的spfa,确实只需要正反两条边都设置一下即可。

但是这题每条边是有费用的,也就是通过这条路的时间。如果你走了这条边,你的费用会+cost。如果你走第二遍发现这条边不走更好,那么你就会退回这条边的流量,并且费用也会-cost。所以我们这题我们一条边需要开四条边才对。超级源点超级汇点除外,只需正反即可。

代码如下:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int INF = 0x7fffffff;
const int maxn = 10000 + 5;
int n, m, ans = 0;
int head[maxn], to[maxn * 4], front[maxn * 4], flow[maxn * 4], cost[maxn * 4], ppp;
int dis[maxn], minflow[maxn];
bool flag[maxn];
pair<int, int> par[maxn];

bool spfa(int s, int e)
{
	int u, v;
	for(int i = 0; i <= n + 1; i++)
		dis[i] = INF;
	memset(flag, 0, sizeof(flag));
	dis[s] = 0;
	minflow[s] = INF;
	queue <int> q;
	q.push(s);
	while(!q.empty())
	{
		u = q.front();
		q.pop();
		flag[u] = 0;
		for(int i = head[u]; ~i; i = front[i])
		{
			v = to[i];
			if(flow[i] && dis[v] > dis[u] + cost[i])
			{
				dis[v] = dis[u] + cost[i];
				par[v] = (make_pair(u, i));
				minflow[v] = min(minflow[u], flow[i]);
				if(!flag[v])
				{
					flag[v] = 1;
					q.push(v);
				}
			}
		}
	}
	if(dis[e] == INF)
		return 0;
	return 1;
}

void Min_Cost_Max_Flow(int s, int e)
{
	int p;
	while(spfa(s, e))
	{
		p = e;
		while(p != s) {
			flow[par[p].second] -= minflow[e];
			flow[par[p].second^1] += minflow[e];
			p = par[p].first;
		}
		ans += dis[e];
	}
	cout << ans << endl;
}

void add(int u, int v, int f, int c)
{
	to[ppp] = v;
	front[ppp] = head[u];
	flow[ppp] = f;
	cost[ppp] = c;
	head[u] = ppp++;
}

int main()
{
	int u, v, c;
	memset(head, -1, sizeof(head));
	ppp = 0;
	scanf("%d%d", &n, &m);
	while(m--)
	{
		scanf("%d%d%d", &u, &v, &c);
		add(u, v, 1, c);
		add(v, u, 0, -c);
		add(v, u, 1, c);
		add(u, v, 0, -c);
	}
	add(0, 1, 2, 0);
	add(1, 0, 0, 0);
	add(n, n + 1, 2, 0);
	add(n + 1, n, 0, 0);
	Min_Cost_Max_Flow(0, n + 1); 
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值