UVA 116 Unidirectional TSP (多阶段决策问题,DP解决)

紫书上的例题,我们令dp【i】【j】为从表格i,j点开始到最后一列的最小花费。由于还需要输出字典序,所以每一个点我们都要得到它能到下一列哪三行,对于第0行和第n-1行特殊处理,然后将这三行排序,从最小的开始检验,如果符合条件则更新,这样就可以处理相等的情况,并且字典序是最小的。

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<string>
#include<set>
#include<map>
#include<stack>
#include<queue>
using namespace std;
#define eps 1e-7
const int maxn = 105;
const int maxm = 10005;
const int INF = 0x3f3f3f3f;
int n, m;
int dp[maxn][maxn], nx[maxn][maxn], G[maxn][maxn];

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
#endif // ONLINE_JUDGE
    while(scanf("%d%d", &n, &m) != EOF) {
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < m; j++) {
                scanf("%d", &G[i][j]);
            }
        }
        for(int i = 0; i < n; i++) {
            dp[i][m - 1] = G[i][m - 1];
        }
        for(int j = m - 2; j >= 0; j--) {
            for(int i = 0; i < n; i++) {
                dp[i][j] = INF;
                int row[3] = {i - 1, i, i + 1};
                if(i == 0)
                    row[0] = n - 1;
                if(i == n - 1)
                    row[2] = 0;
                sort(row, row + 3);
                for(int k = 0; k < 3; k++) {
                    int d = dp[row[k]][j + 1] + G[i][j];
                    if(dp[i][j] > d) {
                        dp[i][j] = d;
                        nx[i][j] = row[k];
                    }

                }
            }
        }

        int Min = INF, key;
        for(int i = 0; i < n; i++) {
            if(dp[i][0] < Min) {
                Min = dp[i][0];
                key = i;
            }
        }
        for(int i = 0; i < m; i++) {
            printf("%d%c", key + 1, i == m - 1 ? '\n' : ' ');
            key = nx[key][i];
        }
        printf("%d\n", Min);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值