背景
自然语言转SQL,再将SQL结果集转图形,在NLP领域是个非常不错的研究方向,这样做的好处在我看来,主要有以下点:
1、数据分析人员无需写Code(SQL)实现取数,搜索数据,灵活方便,支持快速多变的adhoc查询
2、相对于报表和BI系统,数据分析人员主动探索数据,而不是被动接收相对固定的报表
3、搜索的方式简单易用、方便快捷,无需拖拽或定位到报表系统的某一级目录
4、接入新业务的成本极低,只需配置元数据,无需RD开发即可接入,提高开发、分析的效率
适合的人群以及面向的用户群:
1、业务专家或领域专家
2、数据分析人员
3、运营管理人员
4、产品经理(PM)或销售管理人员(BDM)
定位
需求无止境,有做不完的报表。
在数据调研阶段,往往一个需求的响应时间按天来计算,这对于决策就是灾难。
因此,此系统的定位是个快速响应临时需求的系统,而非固定报表类大盘系统。
平台或框架
非报表系统
SQL自动生成
图表自动生成
分析能力模型
借鉴Palantir公司的一篇文章:Friction in Human-Computer Symbiosis: Kasparo

本文探讨了一种新的数据分析方法——通过自然语言搜索(NL2SQL2Graph),让数据分析师无需编写SQL即可进行快速查询。该系统旨在解决传统报表系统中的响应速度慢、灵活性不足等问题,适用于业务专家、数据分析人员等。文章提到了系统的定位是快速响应临时需求,而非固定报表系统,并介绍了其分析能力模型。此外,还分享了调研过程和Google的Analyza系统作为灵感来源,以及系统实现的初步思路。
最低0.47元/天 解锁文章
2943

被折叠的 条评论
为什么被折叠?



