HDU 3037 Saving Beans 组合数取模 Lucas定理

    唔,果然太久没写博客,都有点手生了,格式什么的怎么排来着......

    好吧,寒假来了,继续重新开始一波刷题,继续把博客复活~

    这道题的题意就是给你三个数,n,m,p,n是树的个数,m是最多拿的果子,p是最后求的数取模p,问有几种拿果子的方法。这样一看这个题就是一个找规律的题,其实可以把这个题合并起来,树的个数是n,可以把最多拿的果子看作树,然后每个树上拿一个果子,问这m个果子的拿法。简单的说就是直接取组合数C(m+n,m)就可以了。不过.....我之前遇见组合数的题目的时候都是直接打表,杨辉三角什么的= =这题数据太大了没法打表啊。问了下队友他告诉我有种定理可以求组合数取模,然后搜了一下搜到了Lucas定理,也就是Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p),好吧写个公式出来就行了。

    下面代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
long long p,m1,n1;

long long Pow(long long a,long long b)
{
    long long ans=1;
    while(b)
    {
        if(b&1)
        {
            b--;
            ans=(ans*a)%p;
        }
        b>>=1;
        a=(a*a)%p;
    }
    return ans;
}

long long C(long long n,long long m)
{
    if(n<m)
        return 0;
    long long a=1,b=1;
    while(m)
    {
        a=(a*n)%p;
        b=(b*m)%p;
        m--;
        n--;
    }
    return (a*Pow(b,p-2))%p;
}

long long Lucas(long long n,long long m)
{
    if(m==0)
        return 1;
    return Lucas(n/p,m/p)*C(n%p,m%p)%p;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld%lld%lld",&n1,&m1,&p);
        cout<<Lucas(n1+m1,m1)<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值