牛顿迭代式(Newton's Method)解多次方程

本文介绍了牛顿迭代法(Newton's Method)用于解多次方程的原理,通过在函数切线上找到与x轴的交点来逐步逼近方程的解。文章以解三次方程为例,展示如何编写代码实现该方法,包括如何选择初始点、迭代公式以及求导过程。代码示例中,根据给定的系数和迭代条件,从INT_MAX开始迭代,直至找到满足特定范围的解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    设r是
的根,选取
作为r的初始近似值,过点
作曲线
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值