之前去听ACM讲座说到树状数组,突然发现之前学的一点树状数组的东西有点搞忘了,就去随便搜了道题敲一遍来回忆下.....
这个题解完全参考 http://www.cnblogs.com/wuyiqi/archive/2012/03/28/2420916.html , 只是加了一些更详细的注解。
题意:给你n个数,求长度大于等于2的且相邻数字绝对值差不超过H的序列的个数
很容易想到一个朴素的O(n^2)DP
dp[i]表示以下标i元素为结尾的满足题意的序列数加1(加上了长度为1的序列)
dp[i]=sigma(dp[j],abs(val[i]-val[j])<=H)(1<=j<i,第二个参数表示条件)
由于DP转移过程是求和的操作,所以可以用树状数组来优化求和操作。(额 懒得写了,直接复制粘贴)
本来想以输入的每个数直接做树状数组下标的,但是输入的数最多10万个,最大为1亿,会MLE,所以对其进行离散化:先排序去重,将此时的下标作为树状数组下标。 比如输入的4个数为1,,5,1亿,3, 排序后变成1,3,5,1亿。 此时1亿的下标为4(1开始数)。
另外,有个要注意的地方:由于结果要取模,如果是两个数相减,(a-b)%MOD,有可能是负数,所以记得加上MOD,(a-b+MOD)%MOD
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MOD 9901
#define MAXN 100010
using namespace std;
//a数组存输入的数,sum存a对应树状数组,b用来离散化a数组
int a[MAXN],sum[MAXN],b[MAXN];
int n,h;
/*
*树状数组模板
*/
int lowbit(int x){
return x & -x;
}
void Update(int x,int d){
for(int i = x;i < MAXN;i += lowbit(i)){
sum[i] = (sum[i]+d) % MOD;
}
}
int Query(int x){
int ans = 0;
for(int i =x;i >= 1;i -= lowbit(i)){
ans = (ans+sum[i]) % MOD;
}
return ans;
}
int main(){
while(scanf("%d%d",&n,&h) != EOF){
memset(sum,0,sizeof(sum));
for(int i = 1;i <= n;i++){
scanf("%d",&a[i]);
}
memcpy(b,a,sizeof(a));
sort(b+1,b+1+n);
int count = unique(b+1,b+1+n) - (b+1); //b数组去重后元素个数
int ans = 0;
for(int i = 1;i <= n;i++){
int cur = lower_bound(b+1,b+1+count,a[i]) - b;
int low = lower_bound(b+1,b+1+count,a[i]-h) - b;
int high = upper_bound(b+1,b+1+count,a[i]+h) - b - 1; //这里注意不用lower
int temp = (Query(high) - Query(low-1) + 1 + MOD) % MOD;
ans += temp;
Update(cur,temp);
}
printf("%d\n",(ans-n+MOD)%MOD);
}
return 0;
}