HDOJ1269 迷宫城堡 ---- Tarjan算法求有向图强联通分量

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1269

Problem Description

为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。

 

 

Input

输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。

 

 

Output

对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。

 

 

Sample Input


 

3 3 1 2 2 3 3 1 3 3 1 2 2 3 3 2 0 0

 

 

Sample Output


 

Yes No

题解:

 题目要求有向图中任意一对节点相互可达,即强联通。那么这个图就是一个强联通图,也就是说对该图求强连通分量(极大强联通子图),求出的结果为该图本身,也就是强联通分量的节点数为n。

求图的强联通分量比较好的算法是Tarjan, 该算法利用DFS的思想,从图中任一节点开始深度搜索。

搜索过程中用一个dfn[]数组记录每个节点搜索时的时间(或者说搜索深度),low[]记录该节点可达的节点中最小的dfn值,

每搜索一个节点,将其入栈,用stack[]数组表示栈,vis[]数组记录节点是否在栈中。

这样如果在搜索的过程中没有出现回环,那么从一笔画搜索下去的节点,low值肯定越来越大,这样这些节点无法形成联通图。

如果搜索到的某个节点,又与之前已经搜过的祖先节点连接,就形成环(如图红色部分,从上到下编号1,2,3),这样该环就是以1为根节点的联通子图,但不一定是极大联通子图。 要找到一条搜索路径中极大联通子图的根节点,那就得找到形成回环的节点中dfn最小的那个(因为再往上走就不联通了)。

要找这样的点,就利用low来找。每次搜索到回环搜,也就是相当于图中搜到3节点,发现下一个节点1的dfn不为0而且1在栈中,也就是已经搜过了,那就用1的low值更新掉low[3].... dfs回溯的时候,判断当前节点u的low[u] == dfn[u],如果条件成立说明是极大联通图的根,否则说明从该节点还能往回走。

(更详细讲解参考https://www.cnblogs.com/stxy-ferryman/p/7779347.html

 

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define MAXN 10010
using namespace std;
int n,m;
int dfn[MAXN],stack[MAXN],vis[MAXN],low[MAXN];// tarjan算法涉及的四个数组
int top;// 栈顶指针
vector<int> vec[MAXN]; // 邻接表
int timer; // dfs的时间
bool flag; // 递归退出标记
bool result;// 结果
// 初始化
void Init() {
    flag = false;
    top = 0;
    timer = 0;
    memset(vis,0,sizeof(vis));
    memset(dfn,0,sizeof(dfn));
    for(int i = 1;i <= n;i++) vec[i].clear();
}

// tarjan算法
void Tarjan(int u) {
    if(flag) return;
    timer++; // 时间+1
    dfn[u] = low[u] = timer;
    stack[top++] = u; // 入栈
    vis[u] = true;// 标记入栈
    int size = vec[u].size(); // 邻接节点个数
    // dfs遍历周围节点
    int node;
    for(int i = 0;i < size;i++) {
        node = vec[u][i];
        if(dfn[node] == 0) {
            // 该节点未访问
            Tarjan(node);
            low[u] = min(low[u],low[node]); // 更新low值
        } else {
            // 该节点已经被访问过
            if(vis[node]) {
                low[u] = min(low[u],low[node]); // 更新low值
            }
        }
    }
    if(low[u] == dfn[u]) {
        // u是强联通子图(搜索树)的根节点
        int cnt = 1;
        top--;
        while(stack[top--] != u) {
            cnt++;
        }
        flag = true;
        if(cnt != n) {
            result = false;
        } else {
            result = true;
        }
    }
}

int main()
{
   while(scanf("%d%d",&n,&m) != EOF) {
       if(n == 0 && m == 0) break;
       Init();
       int a,b;
       for(int i = 0;i < m;i++) {
            scanf("%d%d",&a,&b);
            vec[a].push_back(b);
       }
       Tarjan(1);
       if(result) {
           printf("Yes\n");
       } else {
           printf("No\n");
       }
   }
   return 0;
} 

 

阅读更多
换一批

没有更多推荐了,返回首页