TLD视觉跟踪

本文介绍了TLD视觉跟踪算法,包括其基本原理和应用,并列举了多个源代码资源供读者参考学习。作者指出,TLD算法在工程应用上表现出色,但实时性和适应性仍有待提高。此外,文中还提到了Compressive Tracking算法,认为其具有更好的跟踪效果和实时性。
摘要由CSDN通过智能技术生成

TLD算法好牛逼一个,这里有个视频,是作者展示算法的效果,http://www.56.com/u83/v_NTk3Mzc1NTI.html。下面这个csdn博客里有人做的相关总结,感觉挺好的,收藏了!下面有个Compressive Tracking的网址,提供的代码很少,但实时性很好,matlab代码下下来就能用。

 

以下博文转自:http://blog.csdn.net/windtalkersm/article/details/8018980

TLD是一种算法的简称,原作者把它叫做Tracking-Learning-Detection。搞视觉的人看到这个名字都会吓一跳,很ambitious的计划。是09年的工作,不算太久,不过也不太新。网上关于这个的资源其实很多,很大程度和作者开放源代码有关。


学习过程中碰到的第一个问题就是资源太多---当然是相对这个领域而言,一般能找到一个忠实再现算法的源码就已经很好了。所以把找到的list一下,虽然有点浪费时间,希望可以对其他人有所帮助。具体的细节就不多说了,有很多很棒的分析也列在下面,比如zouxy09写的源码注释,实在不能再详细了。如果硬要找茬,那就是大段的文字让人头晕,也没怎么排版。我倒想画几个简单的图补充一下,不知有什么好点的画图程序推荐(latex, or GNUPlot?没用过)


源代码资源:

1. 原作者 Zdenek Kalal

作者主页: http://info.ee.surrey.ac.uk/Personal/Z.Kalal/

源代码页: https://github.com/zk00006/OpenTLD

编程语言:Matlab + C

TLD源码理解 http://t.cn/zjmBXHg


2. Alan Torres

源代码页:https://github.com/alantrrs/OpenTLD

实现语言:C++


3. arthurv版

源代码页:https://github.com/arthurv/OpenTLD

实现语言:C++

注:和上面的没有发现任何区别


4. jmfs版

源代码页:https://github.com/jmfs/OpenTLD

实现语言:C++

注:和上面两个没有区别,只不过加入了VS2010工程文件,理论上可以直接在Windows下编译通过。不过OpenCV检测不到作者的webcam(!!!),所以他用了另一个VideoInput类来handle摄像头输入。

 

This is an adaptation of arthurv's fork of OpenTLD (https://github.com/arthurv/OpenTLD) 
to be immeadiately runnable in Visual Studio 2010.

 

5. Georg Nebehay版 (终于有个不一样的了。。。。)

源代码页:http://gnebehay.github.com/OpenTLD/

注1:这个的好处是提供可执行文件下载(Ubuntu 10.04和Windows)。BUT, as you would expect,基本上到了你的机器上都跑不了。还是自己老老实实build吧。

注2:这个版本需要安装Qt。不过好像作者关掉了Qt的选项(相关代码还在),所以可以编译,但无法显示结果

注3:CSDN下载上有个“openTLD Qt 版“,就是这个版本。不过加了VS的工程文件---在我的机器上还是不能PnP, don't bother

http://download.csdn.NET/download/muzi198783/4111915


6. Paul Nader版(又一个Qt 版!)

QOpenTLD: http://qopentld.sourceforge.Net/

源代码页: http://sourceforge.net/projects/qopentld/

注1:需要OpenCV和Qt。 原系统要求Qt 4.3.7OpenCV 2.2。

注2:Windows和Linux下都提供了编译工程或makefile。估计也是唯一一个移植到Android平台下的TLD!


7. Ben Pryke版(又一个student project!)

源代码页:https://github.com/Ninjakannon/BPTLD

注:依然是Matlab+C/C++的混合实现。亮点是有很详细的Documentation(8页),介绍了算法的理解和实现细节。可以帮助理解原算法


博客资源(中文):

1.  庖丁解牛TLD (yang_xian521)

http://blog.csdn.net/yang_xian521/article/details/6952870

注1:从文章看作者是基于原作者的matlab版分析的。从函数名看上面的2/3/4应该是matlab--->C++的"直译",函数名都没变。这样最好,可以和下面的对照着看,同时学matlab和C++


2.  TLD(Tracking-Learning-Detection)学习与源码理解 (zouxy09)

http://blog.csdn.net/zouxy09/article/details/7893011

注1: 用的是<<arthurv版>>,前面说过,不能再详细了!

注2: 下面三个是从这篇copy的


3. 《再谈PN学习》:

http://blog.csdn.net/carson2005/article/details/7647519

4. 《比微软kinect更强的视频跟踪算法--TLD跟踪算法介绍》

http://blog.csdn.net/carson2005/article/details/7647500

5. 《TLD视觉跟踪技术解析》

http://www.asmag.com.cn/number/n-50168.shtml


想说的话:

1. 分享:前段时间把 TLD::init(...)看完了,本想一鼓作气,其他的事太多只好放下。不过我对detection和tracking比较熟,init中已经把learning作了一遍,看懂了剩下的就容易了。现在重新捡起,无意中发现了zouxy09的注释,省了太多力气,半天就看完了。很多细节不用自己去抠--- 我们常抱怨这资源那文档太少,羡慕老外能力强,动作快,和他们愿意分享关系太大。经常看到一些不错的文章收藏起来,过几天去看居然删了!


可以理解可能是开公司要保密,但如果害怕别人知道了自己的思路就做不下去,那还是不要在这个领域做了。算法只是思想,谁也垄断不了。算法也一定是不断更新的, 抱着一个算法不放也存活不了几年。原作者也基于这个技术开公司了,也没见他们基于这个限制别人使用。SIFT,SURF都patent了也没听说赚了大钱,kinect告诉你算法也实现不了。要保密的是实现细节


2. 比较: 终于看完了实现,总的感觉这个算法还是更象工程应用(engineering)而不是理论突破(也不能要求太多了是不是)。感觉这么结合后并不一定会比单个的跟踪(tracking)或检测(detection-by-classification)模块作的更好,毕竟还是没有解决外观(appearence)和尺度(scale)变化这两个根本难题。 不过这种框架反而应该在实际中非常实用,因为----------可调的参数太多了!

TLD相信很多人都试过了,实时性很多人都在抱怨,而且拿到自己的视频上总要调些参数效果才好。


比较起来更喜欢今年ECCV上Kaihua Zhang的Compressive Tracking:理论高深的吓人(开玩笑),源码简单的吓人。而且是目前为止我试过的off-the-shelf的tracker中跟踪效果最好的,不用调任何参数,绝对实时----代码那么少,想不实时都难吧(顺便说一句作者的blog就在上面提到过)。这才是做研究的方法,有个强大的理论做支撑,实现可以很简单却不会影响效果。所以如果搞数学的人愿意做应用,很多人都会下岗

http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm

另一个PWP(Pixel-Wise Posteriors),publish时间和TLD差不多,性能看上去也很美,不过作者说要开源,一直没有兑现。是个遗憾。个人觉得level set对部分遮挡效果应该很好,做到实时也不是难事

http://www.robots.ox.ac.uk/~cbibby/research_pwp.shtml


3. 总结:TLD其实是一个非常合适的入门和进阶算法:

a. 有理论,有高质量的paper(BMVC, CVPR, ICPR, 最后PAMI)

b. 有源代码!Matlab, C++, Windows, Linux, .....你还想要啥?

c. 不同大牛小牛分享的详细的介绍和详细的代码注释(几乎每一行都解释到了)!

4. 牵涉面广,涉及到detection, tracking, classifcation,传统的视觉技术就是这么硬梆梆的划分的三大类。研究完了对每一部分多少能有点心得。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值