PAC学习模型

1.问题框架

   X代表所有实例的集合,目标函数在其上定义。例如,X可表示所有人的集合,每个人描述为属性age(young或 old)和height (short或 long)。C代表学习器要学习的目标概念集合。C中每个目标概念c对应于X的某个子集,或一个等效的布尔函数cX{0,1}例如,C中一个目标函数c为概念:“是滑雪者的人”。若x是c的正例,则c(x)=1;若x为反例,则c(x)=0。

    假定实例按照某概率分布DX中随机产生。例如D可为从某体育用品商店走出来的人这样一个实例分布。一般地,D可为任何分布,而且它对学习器是未知的。对于D所要求的是它的稳定性,即该分布不会随时间变化。训练样例的生成按照D分布随机抽取实例x,然后x及其目标值c(x)被提供给学习器。

     在此框架下,我们感兴趣的是刻画不同学习器L的性能,这些学习器使用不同假设空间H,并学习不同类别的C中的目标概念。由于我们要求L足够一般,以从C中学到任何目标概念,所以不论训练样例的分布如何,我们经常会对C中所有可能的目标概念和所有可能的实例分布D进行最差情况的分析。

为了描述学习器输出的假设h对真实目标概念的逼近程度,首先要定义假设h对应于目标概念c和实例分布D的真实错误率(true error)。非形式的描述是:h的真实错误率为应用h到将来按分布D抽取的实例时的期望的错误率。实际上第5章已经定义了h的真实错误率。为方便起见,这里重述一下该定义,使用c表示布尔目标函数。

定义:            假设h关于目标概念c和分布D的真实错误率(true error)为h误分类按照D随机抽取的实例的概率。

error(D,h)=Pr[c(x)!=h(x)](x属于D)

概念c和h被表示为X中标为正例的实例集合。h对应于c的错误率为,随机选取的实例落入h和c不一致区间(即它们的集合差)的概率。注意,错误率定义在整个实例分布之上,而不只是训练样例之上,因为它是在实际应用此假设h到后续实例上时会遇到的真实错误率。

    关于c的h的错误率为一个随机抽取的实例落入h和c对它的分类不一致的区间的概率。+和-点表示正反训练例。注意h关于c有一个非零的错误率,尽管迄今为止h和c在所有5个训练样例上都一致。

    注意,此错误率强烈地依赖于未知的概率分布D。例如,如果D是一个均匀的概率分布,它对X中每个实例都赋予相同的概率,那么图7-1中假设的错误率将为h和c不一致的空间在全部实例空间中的比例。然而,如果D恰好把h和c不一致区间中的实例赋予了很高的概率,相同的h和c将造成更高的错误率。极端情况下若D对满足h(x)=c(x)的所有实例赋予零概率,图7-1中h的错误率将为1,而不论h和c在多少实例上分类一致。

最后,注意h对应于c的错误率不能直接由学习器观察到。L只能观察到在训练样例上h的性能,它也只能在此基础上选择其假设输出。我们将使用术语训练错误率(training error)来指代训练样例中被h误分类的样例所占比例,以区分上面定义的真实错误率。这里关于学习复杂度的分析多数围绕着这样的问题:“ h的观察到的训练错误率对真实错误率errorD(h)产生不正确估计的可能性有多大?”

     注意此问题与第5章考虑的问题之间的密切联系。回忆在第5章中定义了h关于样例集合S的样本错误率 (sample error),为样例集合S中被h误分类的样例所占比例。上面定义的训练错误率就是当S为训练样例集合时的样本错误率。在第5章中,我们在数据样本S独立于h抽取的前提下,确定样本错误率对估计真实错误率产生误导的概率。然而当S是训练数据集合时,学到的假设非常依赖于S。因此,本章将给出这一重要的特殊情形下的分析。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值