RELAX算法

RELAX算法

y ( n ) = ∑ k = 1 K a k s k ( n ) n = 1 , ⋯   , N y(n) = \sum_{k=1}^{K} a_k s_k(n) \qquad n=1,\cdots,N y(n)=k=1Kaksk(n)n=1,,N

[ y ( 1 ) y ( 2 ) ⋮ y ( N ) ] = [ a 1 a 2 ⋮ a K ] ⋅ [ s 1 ( 1 ) s 2 ( 1 ) ⋯ s K ( 1 ) s 1 ( 2 ) s 2 ( 2 ) ⋯ s K ( 2 ) ⋮ s 1 ( N ) s 2 ( N ) ⋯ s K ( N ) ] + [ e ( 1 ) e ( 2 ) ⋮ e ( N ) ] \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\y(N) \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_K \end{bmatrix} \cdot \begin{bmatrix} s_1(1) & s_2(1) \cdots & s_K(1)\\ s_1(2) & s_2(2) \cdots & s_K(2) \\ \vdots \\ s_1(N)& s_2(N) \cdots & s_K(N) \end{bmatrix} + \begin{bmatrix} e(1) \\ e(2) \\ \vdots \\e(N) \end{bmatrix} y(1)y(2)y(N) = a1a2aK s1(1)s1(2)s1(N)s2(1)s2(2)s2(N)sK(1)sK(2)sK(N) + e(1)e(2)e(N)

根据最小二乘准则,问题转化为:
{ f k , a k } k = 1 K = a r g m i n ∣ ∣ y − ∑ k = 1 K a k ω ( f k ) ∣ ∣ 2 \{ f_k , a_k\}_{k=1}^{K} = arg \quad min \quad ||y-\sum_{k=1}^{K} a_k \omega(f_k)||^2 {fk,ak}k=1K=argmin∣∣yk=1Kakω(fk)2
ω ( f k ) = [ 1 e j 2 π f k ⋮ e j 2 π f k ( N − 1 ) ] \omega(f_k) = \begin{bmatrix} 1 \\ e^{j2\pi f_k} \\ \vdots \\e^{j2 \pi f_k(N-1)} \end{bmatrix} ω(fk)= 1ej2πfkej2πfk(N1)
参数估计:
f K ^ = a r g m i n ∣ ∣ ω H ( f k ) y k ∣ ∣ 2 \hat{f_K} = arg \quad min \quad || \omega^H(f_k) y_k ||^2 fK^=argmin∣∣ωH(fk)yk2
a k = ω H ( f k ) y k N a_k = \frac{\omega^H(f_k) y_k}{N} ak=NωH(fk)yk
收敛性由第p个结果和(p-1)个结果的差小于预设的阈值 ϵ \epsilon ϵ,则算法结束。

迭代过程描述如下:

  1. 取i=1,令Y(1,:) = y,得到信号初始估计: a 1 a_1 a1 f 1 f_1 f1
  2. 取i=2,令Y(2,:) = y − ∑ k = 1 , k ≠ i K a k s k ( n ) y - \sum_{k=1,k \neq i} ^{K} a_k s_k(n) yk=1,k=iKaksk(n),去除第一个频率分量,再得到第二个信号的初始估计: a 2 a_2 a2 f 2 f_2 f2;重新计算第一个信号的初始估计 a 1 a_1 a1 f 1 f_1 f1,反复迭代至收敛。
  3. 取i=3,令Y(3,:) = y − ∑ k = 1 , k ≠ i K a k s k ( n ) y - \sum_{k=1,k \neq i} ^{K} a_k s_k(n) yk=1,k=iKaksk(n),去除第一个频率分量,其中 a 1 a_1 a1 f 1 f_1 f1 a 2 a_2 a2 f 2 f_2 f2由第二步所得,再得到第三个信号的初始估计: a 3 a_3 a3 f 3 f_3 f3;由获得的 a 2 a_2 a2 f 2 f_2 f2 a 3 a_3 a3 f 3 f_3 f3重新计算参数 a 1 a_1 a1 f 1 f_1 f1;再由 a 1 a_1 a1 f 1 f_1 f1 a 3 a_3 a3 f 3 f_3 f3重新计算参数 a 2 a_2 a2 f 2 f_2 f2;再由 a 1 a_1 a1 f 1 f_1 f1 a 2 a_2 a2 f 2 f_2 f2重新计算参数 a 3 a_3 a3 f 3 f_3 f3;反复迭代至收敛。
  4. 重复上述步骤直至i=K

在这里插入图片描述

问题:只能计算归一化频率…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值