主题
这篇文章主要结合VMD论文和MATLAB代码解读变分模态的主要流程。
参考博客:
原文链接:https://blog.csdn.net/weixin_46062179/article/details/122268070
VMD
基础知识
-
IMF,Intrinsic Mode Function ,调幅调频信号 u k ( l ) = A k ( l ) c o s ( Φ k ( l ) ) u_k(l) = A_k(l) cos(\Phi_k(l)) uk(l)=Ak(l)cos(Φk(l))
这个定义满足EMD中IMF的约束,比如,锯齿信号,不是调幅调频信号,但满足EMD中IMF的两个约束。 而新的定义约束了IMF有限的带宽。这是VMD模型进行模式分离假设的前提。
-
卡森公式:最大频偏与最高调制频率直和的两倍 B F M = 2 × ( Δ f + f F M ) B_{FM} = 2\times (\Delta f +f_{FM}) BFM=2×(Δf+fFM)
实际IMF带宽总数: B A M − F M = 2 × ( Δ f + f F M + f A M ) B_{AM-FM} = 2\times (\Delta f +f_{FM}+f_{AM}) BAM−FM=2×(Δf+fFM+fAM)f ( t ) = ( 1 + 0.5 c o s ( 2 π f A M t ) ) ⋅ c o s ( 2 π f c t + Δ f / f F M c o s ( 2 π f F M t ) ) f(t) = (1+0.5cos(2 \pi f_{AM} t)) \cdot cos(2\pi f_c t + \Delta f/f_{FM} cos(2 \pi f_{FM} t)) f(t)=(1+0.5cos(2πfAMt))⋅cos(2πfct+Δf/fFMcos(2πfFMt))
-
已有信号分解的算法的不足:
1)EMD缺乏数学理论 2)大多数递归筛选不允许向后误差校正 3)噪声不适应 4)小波方法的硬带限问题 5)EWT需要预定义滤波器组边界 -
Wiener Filtering
f ^ ( ω ) = f ^ 0 1 + α ω 2 \hat{f}(\omega) = \frac{\hat{f}_0}{1+\alpha \omega^2} f^(ω)=1+αω2f^0
恢复的信号是在输入信号f0在角频率为0附近的低通窄带信号。 -
一维希尔伯特变换将预先函数映射为相应的正弦函数,,是一种全通滤波器,传递函数为:
h ^ ( ω ) = − j s g n ( ω ) = − j ω ∣ ω ∣ \hat{h}(\omega) =-j sgn(\omega)= -j\frac{\omega}{|\omega|} h^(ω)=−jsgn(ω)=−j∣ω∣ω
h ( t ) = 1 π t h(t) = \frac{1}{\pi t} h(t)=πt1 -
解析信号:信号是解析信号的实部。
f A ( t ) = f ( t ) + j H f ( t ) = A ( t ) e j ϕ ( t ) f_A(t) = f(t)+j Hf(t) = A(t) e^{j \phi(t)} fA(t)=f(t)+jHf(t)=A(t)ejϕ(t)
VMD模型推导
假设:每个子信号(mode)在中心频率附近是紧凑的,带宽是有限的。
- 对每个mode,通过Hilbert变换得到解析信号,获得单边频谱;
- 对每个mode,通过与中心频率的指数混频,将模式频谱移至基带;
- 通过解调信号的高斯平滑度估计带宽,比如梯度的平方范数。
min { u k } , { ω k } { ∑ k ∣ ∣ ∂ t [ ( δ ( t ) + j π t ) ⋆ u k ( t ) ] e − j ω k t ∣ ∣ 2 2 } s . t . ∑ k u k = f \min_{\{u_k\},\{\omega_k\}} \left\{ \sum_k || \partial _t [ (\delta(t)+\frac{j}{\pi t}) \star u_k(t)] e^{-j\omega_k t}||_2^2\right\} s.t. \sum_k u_k = f {uk},{ωk}min{k∑∣∣∂t[(δ(t)+πtj)⋆uk(t)]e−jωkt∣∣22}s.t.k∑uk=f