VMD变分模态分解

本文介绍了VMD(变分模态分解)方法,结合VMD论文和MATLAB代码,详细解释了其主要流程,包括IMF的定义、带宽约束、卡森公式的应用以及改进现有信号分解算法的问题。通过解析信号处理和带宽估计,VMD有助于解决EMD的局限性,如数学理论支持和噪声适应性。
摘要由CSDN通过智能技术生成

主题

这篇文章主要结合VMD论文和MATLAB代码解读变分模态的主要流程。

参考博客:
原文链接:https://blog.csdn.net/weixin_46062179/article/details/122268070

VMD

基础知识
  1. IMF,Intrinsic Mode Function ,调幅调频信号 u k ( l ) = A k ( l ) c o s ( Φ k ( l ) ) u_k(l) = A_k(l) cos(\Phi_k(l)) uk(l)=Ak(l)cos(Φk(l))

         这个定义满足EMD中IMF的约束,比如,锯齿信号,不是调幅调频信号,但满足EMD中IMF的两个约束。
         而新的定义约束了IMF有限的带宽。这是VMD模型进行模式分离假设的前提。
    
  2. 卡森公式:最大频偏与最高调制频率直和的两倍 B F M = 2 × ( Δ f + f F M ) B_{FM} = 2\times (\Delta f +f_{FM}) BFM=2×(Δf+fFM)
    实际IMF带宽总数: B A M − F M = 2 × ( Δ f + f F M + f A M ) B_{AM-FM} = 2\times (\Delta f +f_{FM}+f_{AM}) BAMFM=2×(Δf+fFM+fAM)

    f ( t ) = ( 1 + 0.5 c o s ( 2 π f A M t ) ) ⋅ c o s ( 2 π f c t + Δ f / f F M c o s ( 2 π f F M t ) ) f(t) = (1+0.5cos(2 \pi f_{AM} t)) \cdot cos(2\pi f_c t + \Delta f/f_{FM} cos(2 \pi f_{FM} t)) f(t)=(1+0.5cos(2πfAMt))cos(2πfct+Δf/fFMcos(2πfFMt))

  3. 已有信号分解的算法的不足:
    1)EMD缺乏数学理论 2)大多数递归筛选不允许向后误差校正 3)噪声不适应 4)小波方法的硬带限问题 5)EWT需要预定义滤波器组边界

  4. Wiener Filtering
    f ^ ( ω ) = f ^ 0 1 + α ω 2 \hat{f}(\omega) = \frac{\hat{f}_0}{1+\alpha \omega^2} f^(ω)=1+αω2f^0
    恢复的信号是在输入信号f0在角频率为0附近的低通窄带信号。

  5. 一维希尔伯特变换将预先函数映射为相应的正弦函数,,是一种全通滤波器,传递函数为:
    h ^ ( ω ) = − j s g n ( ω ) = − j ω ∣ ω ∣ \hat{h}(\omega) =-j sgn(\omega)= -j\frac{\omega}{|\omega|} h^(ω)=jsgn(ω)=jωω
    h ( t ) = 1 π t h(t) = \frac{1}{\pi t} h(t)=πt1

  6. 解析信号:信号是解析信号的实部。
    f A ( t ) = f ( t ) + j H f ( t ) = A ( t ) e j ϕ ( t ) f_A(t) = f(t)+j Hf(t) = A(t) e^{j \phi(t)} fA(t)=f(t)+jHf(t)=A(t)ejϕ(t)

VMD模型推导

假设:每个子信号(mode)在中心频率附近是紧凑的,带宽是有限的。

  • 对每个mode,通过Hilbert变换得到解析信号,获得单边频谱;
  • 对每个mode,通过与中心频率的指数混频,将模式频谱移至基带;
  • 通过解调信号的高斯平滑度估计带宽,比如梯度的平方范数。

min ⁡ { u k } , { ω k } { ∑ k ∣ ∣ ∂ t [ ( δ ( t ) + j π t ) ⋆ u k ( t ) ] e − j ω k t ∣ ∣ 2 2 } s . t . ∑ k u k = f \min_{\{u_k\},\{\omega_k\}} \left\{ \sum_k || \partial _t [ (\delta(t)+\frac{j}{\pi t}) \star u_k(t)] e^{-j\omega_k t}||_2^2\right\} s.t. \sum_k u_k = f {uk},{ωk}min{k∣∣t[(δ(t)+πtj)uk(t)]ejωkt22}s.t.kuk=f

VMD(Variational Mode Decomposition)是一种信号分解方法,可以将信号分解成多个不同频率的模态分量。而MATLAB是一种常用的科学计算环境和编程语言,可以用于各种信号处理和数据分析任务。 在MATLAB中使用VMD进行变分模态分解,首先需要将VMD的相关函数加载到MATLAB环境中。这可以通过将VMD源代码文件添加到MATLAB的工作路径或者使用addpath函数来实现。 接下来,我们可以使用MATLAB信号处理工具箱来预处理信号,例如去除噪声或者进行滤波。然后,可以使用VMD函数来进行信号的变分模态分解。这个函数通常需要输入一维的时间序列信号和一些参数,例如分解的模态数目、正则化参数等等。VMD函数会返回分解后的模态分量以及对应的调制函数。 一旦得到了VMD分解结果,可以使用MATLAB的绘图函数将分解后的模态分量和调制函数可视化。这些可视化结果可以帮助我们更好地理解信号的频率分布和时域特征,以及确定哪些分量对于我们感兴趣的分析具有重要的贡献。 此外,MATLAB还提供了丰富的数据处理和分析工具,可以进一步对VMD分解结果进行处理和分析。我们可以利用MATLAB的统计工具进行模态分量的特征提取,或者使用MATLAB的机器学习工具进行模式识别和分类等任务。 综上所述,使用MATLAB进行VMD变分模态分解可以方便地实现信号的频率分析和时域分解,以及进行后续的数据处理和分析。通过将VMDMATLAB的其他功能相结合,我们可以更全面地理解和研究信号的特性和性质。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值