看了大佬的视频后,用自己的代码实现了其中的题目
题目描述:
有n个任务,每个任务有起始时间点,结束时间点,获得的报酬。同一时间不能同时做两个任务,问最多可以获得多少的报酬。
解题思路:
数组:
pre:保存每个任务前一个能做的任务(要做当前任务的情况下)
opt:保存前i个任务的最优解
关键思想:为了让数据更有序,按照每个任务的结束时间以升序进行排序。每个任务有选或不选两种选择。前i个任务的最优解是 前i-1个任务的最优解(不选择当前任务) 和 当前任务的报酬+前一个最接近当前任务(不与当前任务重叠的任务,即pre[i])的最优解(选择当前任务) 中的最优解
测试数据:
8
5 9 3
1 4 5
4 7 4
1 6 8
3 8 6
6 10 2
8 11 4
3 5 1
代码:
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdio>
#include<cmath>
using namespace std;
struct Work{
int start;
int end;
int money;
};
bool mysort(Work a,Work b){
return a.end<b.end;
}
int main(){
freopen("1.txt","r",stdin);
int n,pre[100],opt[100];
Work work[100];
memset(pre,0,sizeof(pre));
memset(opt,0,sizeof(opt));
cin>>n;
for(int i=1;i<=n;i++){
cin>>work[i].start>>work[i].end>>work[i].money;
}
sort(work+1,work+n+1,mysort);
for(int i=1;i<=n;i++){
for(int j=i-1;j>=1;j--){
if(work[j].end<=work[i].start){
pre[i]=j;
break;
}
}
}
opt[1]=work[1].money;
for(int i=2;i<=n;i++){
opt[i]=max(opt[i-1],opt[pre[i]]+work[i].money);
}
cout<<opt[n]<<endl;
return 0;
}