动态规划(一)

看了大佬的视频后,用自己的代码实现了其中的题目

视频链接

题目描述:

有n个任务,每个任务有起始时间点,结束时间点,获得的报酬。同一时间不能同时做两个任务,问最多可以获得多少的报酬。

解题思路:

数组:
pre:保存每个任务前一个能做的任务(要做当前任务的情况下)
opt:保存前i个任务的最优解

关键思想:为了让数据更有序,按照每个任务的结束时间以升序进行排序。每个任务有选或不选两种选择。前i个任务的最优解是 前i-1个任务的最优解(不选择当前任务)当前任务的报酬+前一个最接近当前任务(不与当前任务重叠的任务,即pre[i])的最优解(选择当前任务) 中的最优解

测试数据:
8
5 9 3
1 4 5
4 7 4
1 6 8
3 8 6
6 10 2
8 11 4
3 5 1
代码:
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdio>
#include<cmath>
using namespace std;
struct Work{
	int start;
	int end;
	int money;
};
bool mysort(Work a,Work b){
	return a.end<b.end;
}
int main(){
	freopen("1.txt","r",stdin);
	int n,pre[100],opt[100];
	Work work[100];
	memset(pre,0,sizeof(pre));
	memset(opt,0,sizeof(opt));
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>work[i].start>>work[i].end>>work[i].money;
	}
	sort(work+1,work+n+1,mysort);
	for(int i=1;i<=n;i++){
		for(int j=i-1;j>=1;j--){
			if(work[j].end<=work[i].start){
				pre[i]=j;
				break;
			}
		}
	}
	opt[1]=work[1].money;
	for(int i=2;i<=n;i++){
		opt[i]=max(opt[i-1],opt[pre[i]]+work[i].money);
	}
	cout<<opt[n]<<endl;
	return 0;
}


总感觉还有点问题…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值