西瓜书《学习笔记》-第六章支持向量机

  支持向量机(Support Vector Machine简称SVM)感觉是一个很难理解的方面,他的过程重点是在数学建模的过程。我在这次笔记中对概念性的知识大概描述,对数学推导的过程着重学习。

SVM简介

  支持向量机SVM是Cortes和Vapnik与1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,比那个能够推广到函数拟合等其他机器学习问题中。
支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(或称泛化能力)。 [1]
  总结:支持向量机其实就是寻找一个平面划分(在二位平面就是找界限;在三位空间就是找面),可以以这个为界限把训练的样本划分开来。

在这里插入图片描述

1.间隔与支持向量

在这里插入图片描述
在样本空间中,我们用线性方程来描述超平面划分:
w T x + b = 0 w^Tx+b=0 wTx+b=0
  那么我们如何来寻找最适合的超平面划分呢?他首先要符合的条件是这条线要在两类训练样本的“正中间”。在中学我们学习过线性方程的位置是由 w , b w,b w,b决定的,那么要找到最合适的一组 w , b w,b w,b(且平行),使他们的距离最大(容错率最大),中间的平面就是我们所要的超平面划分。(说的也许有些啰嗦。。。可以看着下面的图进行理解)
  我们先将 w T x + b ≥ 1 w^Tx+b≥1 wTx+b1的部分记为正例(+1); w T x + b ≤ 1 w^Tx+b≤1 wTx+b1的称为负例(-1)。为了方便表示,我们引入了 y i y_i yi来表示+1、-1。
y i ( w T x i + b ) − 1 ≥ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ① y_i(w^Tx_i+b)-1≥0·················① yi(wTxi+b)10
注:当为正例时, y i = + 1 y_i=+1 yi=+1;当为负例时, y i = − 1 y_i=-1 yi=1

  我们开始计算正负例子到超平面的距离:
w i d t h = ( x + − x − ) w ∣ ∣ w ∣ ∣ width=(x_+-x_-)\frac{w}{||w||} width=(x+x)ww
→ w i d t h = w x + − w x − ∣ ∣ w ∣ ∣ →width=\frac{wx_+-wx_-}{||w||} width=wwx+wx
∵ 当 w x + 时 y i = + 1 由 ① 得 w T x + + b ≥ 1 即 w T x + ≥ 1 − b ∵当wx_+时 y_i=+1 由①得w^Tx_++b≥1即w^Tx_+≥1-b wx+yi=+1wTx++b1wTx+1b

∵ 当 w x − 时 y i = − 1 由 ① 得 w T x − + b ≤ − 1 即 − ( w T x − ) ≥ 1 + b ∵当wx_-时 y_i=-1 由①得w^Tx_-+b≤-1 即-(w^Tx_-)≥1+b wxyi=1wTx+b1(wTx)1+b
∴ w i d t h = w x + − w x − ∣ ∣ w ∣ ∣ ≥ 1 − b + ( 1 + b ) ∣ ∣ w ∣ ∣ = 2 ∣ ∣ w ∣ ∣ ∴width=\frac{wx_+-wx_-}{||w||}≥\frac{1-b+(1+b)}{||w||}=\frac{2}{||w||} width=wwx+wxw1b+(1+b)=w2
  我们称上式中的width为间隔,设为 r r r
即 r = 2 ∣ ∣ w ∣ ∣ 即r=\frac{2}{||w||} r=w2

在这里插入图片描述 r = 2 ∣ ∣ w ∣ ∣ r=\frac{2}{||w||} r=w2

  我们要寻找最大的间隔(margin),就是寻找 w , b w,b w,b使得 r r r最大。欲使 r r r最大,就要让 w w w最小或 r = ∣ ∣ w ∣ ∣ 2 2 r=\frac{||w||^2}{2} r=2w2最大。(为什么是 ∣ ∣ w ∣ ∣ 2 呢 ? 是 因 为 方 便 进 行 求 导 ||w||^2呢?是因为方便进行求导 w2便

对偶问题

  对偶问题就是用来解决大间隔划分超平面所对应的模型。在刚才的式子中添加拉格朗日乘子 a i ≥ 0 a_i≥0 ai0,则该问题的拉格朗日函数可写为:
L ( w , b , a ) = 1 2 ∣ ∣ w ∣ ∣ 2 + ∑ i = 1 m a i ( 1 − y i ( w T x i + b ) ) L(w,b,a)=\frac{1}{2}||w||^2+\sum_{i=1}^ma_i(1-y_i(w^Tx_i+b)) L(w,b,a)=21w2+i=1mai(1yi(wTxi+b))
首先对拉格朗日函数 L ( w , b , a ) L(w,b,a) L(w,b,a)求偏导数:
α L α w = ∣ ∣ w ∣ ∣ + ∑ i = 1 m a i y i x i \frac{\alpha L}{\alpha w}=||w||+\sum_{i=1}^ma_iy_ix_i αwαL=w+i=1maiyixi
α L α w = 0 \frac{\alpha L}{\alpha w}=0 αwαL=0 ∣ ∣ w ∣ ∣ = ∑ i = 1 m a i y i x i ||w||=\sum_{i=1}^ma_iy_ix_i w=i=1maiyixi

α L α b = ∑ i = 1 m a i y i \frac{\alpha L}{\alpha b}=\sum_{i=1}^ma_iy_i αbαL=i=1maiyi
α L α b = 0 \frac{\alpha L}{\alpha b}=0 αbαL=0 ∑ i = 1 m a i y i = 0 \sum_{i=1}^ma_iy_i=0 i=1maiyi=0
将上面的两个式子带回拉格朗日函数:
L ( w , b , a ) = 1 2 w T w + ∑ i = 1 m [ a i − a i y i ( w T x i + b ) ] L(w,b,a)=\frac{1}{2}w^Tw+\sum_{i=1}^m [ a_i -a_iy_i(w^Tx_i+b)] L(w,b,a)=21wTw+i=1m[aiaiyi(wTxi+b)]
= 1 2 w T w + ∑ i = 1 m a i − ∑ i = 1 m a i y i w T x i − ∑ i = 1 m a i y i b =\frac{1}{2}w^Tw+\sum_{i=1}^ma_i-\sum_{i=1}^ma_iy_iw^Tx_i-\sum_{i=1}^ma_iy_ib =21wTw+i=1maii=1maiyiwTxii=1maiyib
= 1 2 w T ∑ i = 1 m a i y i x i + ∑ i = 1 m a i − ∑ i = 1 m a i y i w T x i − ∑ i = 1 m a i y i b = \frac{1}{2}w^T\sum_{i=1}^ma_iy_ix_i+\sum_{i=1}^ma_i-\sum_{i=1}^ma_iy_iw^Tx_i-\sum_{i=1}^ma_iy_ib =21wTi=1maiyixi+i=1maii=1maiyiwTxii=1maiyib
= − 1 2 w T ∑ i = 1 m a i y i x i − b ∑ i = 1 m a i y i + ∑ i = 1 m a i =- \frac{1}{2}w^T\sum_{i=1}^ma_iy_ix_i-b\sum_{i=1}^ma_iy_i+\sum_{i=1}^ma_i =21wTi=1maiyixibi=1maiyi+i=1mai
= ∑ i = 1 m a i − 1 2 w T ∑ i = 1 m a i y i x i =\sum_{i=1}^ma_i- \frac{1}{2}w^T\sum_{i=1}^ma_iy_ix_i =i=1mai21wTi=1maiyixi
= ∑ i = 1 m a i − 1 2 ∑ i , j = 1 m a i a j y i y j x i T x j =\sum_{i=1}^ma_i-\frac{1}{2}\sum_{i,j=1}^ma_ia_jy_iy_jx_i^Tx_j =i=1mai21i,j=1maiajyiyjxiTxj
  这样就推出了对偶问题的相关性问题:
m a x α ∑ i = 1 m a i − 1 2 ∑ i , j = 1 m a i a j y i y j x i T x j max_{\alpha}\sum_{i=1}^ma_i-\frac{1}{2}\sum_{i,j=1}^ma_ia_jy_iy_jx_i^Tx_j maxαi=1mai21i,j=1maiajyiyjxiTxj

参考博文

  1. SVM简介(http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值