windows安装mingw

mingw-w64的安装

MinGW全称是Minimalist GNU on Windows,也就是将Linux/Unix环境下赫赫有名的GCC编译器以及其相关的编译调试组件移植到了Windows上。

网页地址:mingw-w64

github地址:Releases · niXman/mingw-builds-binaries

1.windows系统安装

1.1 访问mingw网页

注意:从网页进入的最终位置实际上就是github地址,所以不想从网页进入的可以直接跳到1.2访问github

1.访问https://www.mingw-w64.org/,来到工具下载页面

mingw页面

点击Downloads,再点击Pre-built Toolchains来到下载页,windows用户选择MinGW-W64-bulids

选择操作系统

点击后会跳转到如下界面,可以继续点击前往gitHub。

下载跳转页

1.2 访问github

上述从网页访问github,等价于访问地址:mingw-builds-binaries

github页面

版本参数解释

  • 14.2.0

GCC的版本号;

目标操作系统和API风格

  • i686

​ 32位的操作系统,选择i68664位的操作系统,选择x86_64

  • posix

这是为类Unix系统(如LinuxmacOS)设计的API风格。如果你的程序需要在这些系统上运行,或者你的代码依赖于POSIX API,你应该选择带有posix的工具链。

  • win32

这是为Windows系统设计的API风格。如果你的程序主要面向Windows用户,或者你的代码依赖于Windows特有的API,你应该选择带有win32的工具链。

异常处理机制

  • sjlj

表示这个工具链使用“Setjmp/Longjmp”异常处理机制。SJLJ是一种更传统的异常处理方式,它通常用于那些不支持或不完全支持Windows结构化异常处理(SEH)的操作系统。

  • seh

表示这个工具链使用Windows的结构化异常处理(Structured Exception Handling, SEH)。SEHWindows平台上常用的异常处理机制,它提供了更丰富的异常信息和更灵活的异常处理逻辑。如果你的代码需要与Windows平台的特性紧密集成,或者你的程序主要运行在Windows上,SEH可能是一个更好的选择。

运行时库

  • ucrt

Universal C Runtime的缩写,它是Windows 10及更高版本中包含的一个新运行时库。它提供了与操作系统更紧密集成的API,并通常用于更现代的Windows应用程序。
如果你的目标平台是Windows 10或更高版本,并且你希望利用最新的API和功能,ucrt可能是一个好选择。
使用ucrt的库通常比使用msvcrt的库更小,因为它们不包含一些旧的、不再需要的API

  • msvcrt

Microsoft C Runtime的缩写,它是Microsoft提供的传统C运行时库。
它提供了广泛的API支持,包括一些旧的、可能不再常用的API
如果你的代码依赖于msvcrt特有的API,或者你需要确保你的程序能在较旧的Windows版本上运行,msvcrt可能更适合你。

  • rt_v11

通常指的是“runtime”,即运行时库版本号。

压缩格式

  • .7z

这是文件的压缩格式。.7z7-Zip压缩工具使用的文件格式。它表示文件已经被压缩,以减小文件大小,方便下载和存储。要使用文件中的内容,用户通常需要使用7-Zip或其他兼容的压缩工具来解压缩文件。

根据 您的系统选择对应版本,例如本人win11,下载后解压目录如下:

解压结果

1.3 环境变量配置

下载并解压完成后,下面是重要的配置环境变量环节,理论上两个Path都可以,用户级别限制单一用户访问,系统级别则是对所有用户开放。

环境变量选择

本人推荐使用系统变量,将mingwbin目录书写到环境变量中

环境变量配置

也可以参照JAVA的一般配置,先设置一个相对路径MINGW_HOME,然后在path中使用%MINGW_HOME%\bin.

两者的区别是,如果未来要迁移目录,本方法是直接修改path,而另一种是修改MINGW_HOME,也有些人认为那种方法可读性更高,仁者见仁。

1.4 CLion2024配置MingW环境

安装并设置好mingw环境变量后,就可以在CLion中绑定设置,如图

clion环境

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值