题目描述
牛牛刚刚考完了期末,尽管 牛牛 做答了所有 n\text{}nn 道题目,但他不知道有多少题是正确的。
不过,牛牛 知道第 i\text{}ii 道题的正确率是 pip_ipi。
牛牛 想知道这 n 题里恰好有 0,1,…,n0,1,\dots,n0,1,…,n 题正确的概率分别是多少,对 109+710^9+7109+7 取模。
对 109+710^9+7109+7 取模的含义是:对于一个 b≠0b\neq 0b=0 的不可约分数 aba\over bba,存在 q\text{}qq 使得 b×q mod (109+7)=ab\times q \bmod (10^9+7) =ab×qmod(109+7)=a,q\text{}qq 即为 aba\over bba 对 109+710^9+7109+7 取模的结果。
输入描述:
第一行,一个正整数 n\text{}nn 。
第二行,n\text{}nn 个整数 p1,p2,…,pnp_1,p_2,\dots,p_np1,p2,…,pn,在模 109+710^9+7109+7 意义下给出。
保证 1≤n≤20001\leq n\leq 20001≤n≤2000。
输出描述:
输出一行 n+1\text{}n+1n+1 个用空格隔开的整数表示答案(对 109+710^9+7109+7 取模)。
示例1
输入
复制
1
500000004
输出
复制
500000004 500000004
说明
有 1 道题,做对的概率是 121 \over 221 ( 121 \over 221 在模 109+710^9+7109+7 意义下为 500000004 )。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn = 2010;
const int mod = 1e9 + 7;
ll dp[maxn][maxn];
int a[maxn];
int n;
int main() {
cin >> n;
for(int i = 1; i <= n; i++)
cin >> a[i];
dp[0][0] = 1;
for(int i = 1; i <= n; i++)
dp[i][0] = dp[i - 1][0] * (mod + 1 - a[i]) % mod;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= i; j++) {
dp[i][j] = dp[i - 1][j] * (mod + 1 - a[i]) % mod + dp[i - 1][j - 1] * a[i] % mod;
dp[i][j] %= mod;
}
}
for(int i = 0; i <= n; i++)
cout << dp[n][i] << " ";
return 0;
}