概率论-组合数C

组合数   C n m C_{n}^{m} Cnm


表达意义

         C n m C_{n}^{m} Cnm 的意义: 从n个元素中, 取m个元素的不同组合个数.


         如: 从 A, B, C 三个字母中, 取两个字母的不同组合个数?
         A, B, C 的两两组合为: AB, BC, AC.
         n = 总字母个数, m = 取几个字母组合,
         则: 表示为: C 3 2 C_{3}^{2} C32

计算公式1

        公式:
C n m = n ! m ! ⋅ ( n − m ) ! C_{n}^{m} = \frac{n!}{m!\cdot (n-m)!} Cnm=m!(nm)!n!
n ! = n ∗ ( n − 1 ) ∗ ( n − 2 ) ∗ ( n − 3 ) ∗ ⋯ ⋯ ∗ 1 n! =n*(n-1) *(n-2)*(n-3)*\cdots\cdots*1 n!=n(n1)(n2)(n3)1
如: n = 5 n=5 n=5
则: 5 ! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 5!=5*4*3*2*1 5!=54321

如: n = 7 n=7 n=7
则: 7 ! = 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 7!=7*6*5*4*3*2*1 7!=7654321

特殊情况: 1 ! = 1 1!=1 1!=1 , 0 ! = 1 0!=1 0!=1

计算(1):
         C 3 2 = ? C_{3}^{2} = ? C32=?,
         n = 3 , m = 2 n=3, m=2 n=3,m=2 带入公式:
n ! m ! ⋅ ( n − m ) ! \frac{n!}{m!\cdot (n-m)!} m!(nm)!n!
= 3 ! 2 ! ⋅ ( 3 − 2 ) ! =\frac{3!}{2!\cdot (3-2)!} =2!(32)!3!
= 3 ∗ 2 ∗ 1 2 ∗ 1 ⋅ ( 1 ) ! =\frac{3*2*1}{2*1\cdot (1)!} =21(1)!321
= 6 2 ∗ 1 =\frac{6}{2 * 1} =216
= 6 2 =\frac{6}{2} =26
= 3 =3 =3
         C 3 2 = 3 C_{3}^{2} = 3 C32=3

计算(2):
         C 5 3 = ? C_{5}^{3} = ? C53=?,
         n = 5 , m = 3 n=5, m=3 n=5,m=3 带入公式:
n ! m ! ⋅ ( n − m ) ! \frac{n!}{m!\cdot (n-m)!} m!(nm)!n!
= 5 ! 3 ! ⋅ ( 5 − 3 ) ! =\frac{5!}{3!\cdot (5-3)!} =3!(53)!5!
= 5 ! 3 ! ⋅ ( 2 ) ! =\frac{5!}{3!\cdot (2)!} =3!(2)!5!
= 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 3 ∗ 2 ∗ 1 ⋅ ( 2 ∗ 1 ) ! =\frac{ 5 * 4 * 3 * 2 * 1 }{ 3 * 2 * 1 \cdot (2 * 1) !} =321(21)!54321
= 120 6 ∗ 2 =\frac{120}{ 6 * 2} =62120
= 120 12 =\frac{120}{12} =12120
= 10 =10 =10
         C 5 3 = 10 C_{5}^{3} = 10 C53=10


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值