题目描述
一个学校里老师要将班上NNN个同学排成一列,同学被编号为1∼N1\sim N1∼N,他采取如下的方法:
先将111号同学安排进队列,这时队列中只有他一个人;
2−N2-N2−N号同学依次入列,编号为i的同学入列方式为:老师指定编号为i的同学站在编号为1∼(i−1)1\sim (i -1)1∼(i−1)中某位同学(即之前已经入列的同学)的左边或右边;
从队列中去掉M(M<N)M(M<N)M(M<N)个同学,其他同学位置顺序不变。
在所有同学按照上述方法队列排列完毕后,老师想知道从左到右所有同学的编号。
输入格式
第111行为一个正整数NNN,表示了有NNN个同学。
第2−N2-N2−N行,第iii行包含两个整数k,pk,pk,p,其中kkk为小于iii的正整数,ppp为000或者111。若ppp为000,则表示将iii号同学插入到kkk号同学的左边,ppp为111则表示插入到右边。
第N+1N+1N+1行为一个正整数MMM,表示去掉的同学数目。
接下来MMM行,每行一个正整数xxx,表示将xxx号同学从队列中移去,如果xxx号同学已经不在队列中则忽略这一条指令。
输出格式
111行,包含最多NNN个空格隔开的正整数,表示了队列从左到右所有同学的编号,行末换行且无空格。
输入输出样例
输入 #1
4
1 0
2 1
1 0
2
3
3
输出 #1
2 4 1
说明/提示
样例解释:
将同学222插入至同学111左边,此时队列为:
212 121
将同学333插入至同学222右边,此时队列为:
2312 3 1231
将同学444插入至同学111左边,此时队列为:
23412 3 4 12341
将同学333从队列中移出,此时队列为:
2412 4 1241
同学333已经不在队列中,忽略最后一条指令
最终队列:
2412 4 1241
数据范围
对于20%20%20%的数据,有N≤10N≤10N≤10;
对于40%40%40%的数据,有N≤1000N≤1000N≤1000;
对于100%100%100%的数据,有N,M≤100000N, M≤100000N,M≤100000。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn = 1e5 + 10;
struct node{
int del;
int l, r;
node() {
del = 0, l = 0, r = 0;
}
}a[maxn];
int n, m;
void insert_data(int i) {
int x, y;
scanf("%d%d", &x, &y);
if(y == 0) {
int pre_lef = a[x].l;
a[pre_lef].r = i;
a[i].r = x;
a[i].l = pre_lef;
a[x].l = i;
}
else {
int pre_rig = a[x].r;
a[pre_rig].l = i;
a[i].l = x;
a[i].r = pre_rig;
a[x].r = i;
}
}
void del_data() {
int x;
scanf("%d", &x);
a[x].del = -1;
}
void output() {
int sum = 0, id = 1;
for(int i = 1; i <= n; i++) {
if(a[i].l == 0) {
id = i;
break;
}
}
while(sum < n) {
sum++;
if(a[id].del == 0)
printf("%d ", id);
id = a[id].r;
}
}
int main() {
scanf("%d", &n);
for(int i = 2; i <= n; i++)
insert_data(i);
scanf("%d", &m);
for(int i = 1; i <= m; i++)
del_data();
output();
return 0;
}