随机过程Hw2

文章讨论了随机过程中的期望值和协方差计算,包括离散随机变量序列的线性组合、连续随机变量的线性函数以及特定条件下的概率求解。还涉及中心极限定理在实际问题中的应用。
摘要由CSDN通过智能技术生成

随机过程Hw2
1、设 ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn独立同分布, ξ i \xi_{i} ξi~ U ( 0 , 1 ) U(0,1) U(0,1),对 0 ≤ t ≤ 1 0\leq t\leq1 0t1定义
X ( t ) = 1 n ∑ i = 1 n 1 ξ i ≤ t X(t)=\frac{1}{n}\sum_{i=1}^n1_{\xi_{i}\leq t} X(t)=n1i=1n1ξit
求EX(t),cov(X(s),X(t)).
solution
(1)
E ( x ) = E ( 1 n ∑ i = 1 n 1 ξ i ≤ t ) = 1 n ∑ i = 1 n P ( ξ i ≤ t ) = t \begin{align} E(x)&=E(\frac{1}{n}\sum_{i=1}^n1_{\xi_{i}\leq t})\notag\\ &=\frac{1}{n}\sum_{i=1}^nP(\xi_{i}\leq t)=t\notag \end{align} E(x)=E(n1i=1n1ξit)=n1i=1nP(ξit)=t
c o v ( X ( s ) , X ( t ) ) = E X ( S ) X ( t ) − E X ( S ) E X ( t ) = E ( 1 n 2 ∑ i = 1 n ∑ j = 1 n 1 ξ i ≤ s 1 ξ j ≤ t ) − s t = ( n 2 − n ) s t − n ( s ∧ t ) n 2 − s t = s ∧ t − s t n \begin{align} cov(X(s),X(t))&=EX(S)X(t)-EX(S)EX(t)\notag\\ &=E(\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n1_{\xi_{i}\leq s}1_{\xi_{j}\leq t})-st\notag\\ &=\frac{(n^2-n)st-n(s\wedge t)}{n^2}-st\notag\\ &=\frac{s\wedge t-st}{n}\notag \end{align} cov(X(s),X(t))=EX(S)X(t)EX(S)EX(t)=E(n21i=1nj=1n1ξis1ξjt)st=n2(n2n)stn(st)st=nstst
2、令 { Z n ; n ∈ Z } \{Z_n;n\in Z\} {Zn;nZ}是两两不相关随机变量序列, E Z n = 0 , V a r Z n = 1 EZ_n=0,VarZ_n=1 EZn=0,VarZn=1,令
X n = ∑ i = 0 r α i Z n − i , n ∈ Z X_n=\sum_{i=0}^r\alpha_iZ_{n-i},n\in Z Xn=i=0rαiZni,nZ
这里 r ≥ 1 r\geq 1 r1, α 0 , α 1 , α 2 , ⋯   , α r \alpha_0,\alpha_1,\alpha_2,\cdots,\alpha_r α0,α1,α2,,αr为常数.
E X n 和 C o v ( X n , X m ) EX_n和Cov(X_n,X_m) EXnCov(Xn,Xm).
Solution
E X n = 0 EX_n=0 EXn=0
C o v ( X n , X m ) = E X n X m − E X n E X m = E ( ∑ i = 0 r α i Z n − i ∑ j = 0 r α j Z n − j ) ( 不妨设 n ≤ m ) = { 0 ∣ m − n ∣ > r ∑ k = 0 r − ∣ m − n ∣ α k α k + ∣ m − n ∣ ∣ m − n ∣ ≤ r \begin{align} Cov(X_n,X_m)&=EX_nX_m-EX_nEX_m\notag\\ &=E(\sum_{i=0}^r\alpha_iZ_{n-i}\sum_{j=0}^r\alpha_jZ_{n-j})(不妨设n\leq m)\notag\\ &= \begin{cases} 0 & |m-n|>r\notag\\ \sum_{k=0}^{r-|m-n|}\alpha_k\alpha_{k+|m-n|} & |m-n|\leq r\notag \end{cases} \end{align} Cov(Xn,Xm)=EXnXmEXnEXm=E(i=0rαiZnij=0rαjZnj)(不妨设nm)={0k=0rmnαkαk+mnmn>rmnr

3、设 X ( t ) = A t + ( 1 − ∣ A ∣ ) B , t ≥ 0 X(t)=At+(1-|A|)B,t\geq 0 X(t)=At+(1A)B,t0,这里A和B独立同分布, P ( A = 0 ) = P ( A = 1 ) = P ( A = − 1 ) = 1 3 P(A=0)=P(A=1)=P(A=-1)=\frac{1}{3} P(A=0)=P(A=1)=P(A=1)=31
(1)写出{ X ( t ) X(t) X(t)}的所有样本函数
(2)计算 P ( X ( 1 ) = 1 ) , P ( X ( 2 ) = 1 ) , P ( X ( 1 ) = 1 , X ( 2 ) = 1 ) P(X(1)=1),P(X(2)=1),P(X(1)=1,X(2)=1) P(X(1)=1),P(X(2)=1),P(X(1)=1,X(2)=1).
Solution
(1)
X ( t ) = { 0 A = 0 , B = 0 , 1 A = 0 , B = 1 , − 1 A = 0 , B = − 1 , t A = 1 , − t A − − 1. X(t)= \begin{cases} 0 & A=0,B=0,\\ 1 & A=0,B=1,\\ -1 & A=0,B=-1,\\ t & A=1,\\ -t & A--1. \end{cases} X(t)= 011ttA=0,B=0,A=0,B=1,A=0,B=1,A=1,A1.
(2)
P ( X ( 1 ) = 1 ) = 4 9 P ( X ( 2 ) = 1 ) = 1 9 P ( X ( 1 ) = 1 , X ( 2 ) = 1 ) = 1 9 P(X(1)=1)=\frac{4}{9}\\ P(X(2)=1)=\frac{1}{9}\\ P(X(1)=1,X(2)=1)=\frac{1}{9} P(X(1)=1)=94P(X(2)=1)=91P(X(1)=1,X(2)=1)=91
4、设 Z ( t ) = A X t + 1 − A , t ≥ 0 Z(t)=AXt+1-A,t\geq 0 Z(t)=AXt+1A,t0,这里A和X相互独立, P ( A = 0 ) = P ( A = 1 ) = 1 2 P(A=0)=P(A=1)=\frac{1}{2} P(A=0)=P(A=1)=21,X~ N(1,1).
(1)计算 P ( Z ( 1 ) < 1 ) , P ( Z ( 2 ) < 2 ) , P ( Z ( 1 ) < 1 , Z ( 2 ) < 2 ) ; P(Z(1)<1),P(Z(2)<2),P(Z(1)<1,Z(2)<2); P(Z(1)<1),P(Z(2)<2),P(Z(1)<1,Z(2)<2);
(2)计算 μ Z ( t ) , R Z ( s , t ) \mu_Z(t),R_Z(s,t) μZ(t),RZ(s,t)
Solution
( 1 ) P ( Z ( 1 ) < 1 ) = 1 4 P ( Z ( 2 ) < 2 ) = 3 4 P ( Z ( 1 ) < 1 , Z ( 2 ) < 2 ) = 1 4 (1)P(Z(1)<1)=\frac{1}{4}\\ P(Z(2)<2)=\frac{3}{4}\\ P(Z(1)<1,Z(2)<2)=\frac{1}{4} (1)P(Z(1)<1)=41P(Z(2)<2)=43P(Z(1)<1,Z(2)<2)=41
(2)
R Z ( s , t ) = E ( Z ( s ) Z ( t ) ) = E [ A 2 X 2 s t + A ( 1 − A ) X ( s + t ) + ( 1 − A ) 2 ] = s t E A 2 E X 2 + ( s + t ) E [ A ( 1 − A ) ] E X + E ( 1 − A ) 2 = s t + 1 2 \begin{align} R_Z(s,t)&=E(Z(s)Z(t))\notag\\ &=E[A^2X^2st+A(1-A)X(s+t)+(1-A)^2]\notag\\ &=stEA^2EX^2+(s+t)E[A(1-A)]EX+E(1-A)^2\notag\\ &=st+\frac{1}{2}\notag \end{align} RZ(s,t)=E(Z(s)Z(t))=E[A2X2st+A(1A)X(s+t)+(1A)2]=stEA2EX2+(s+t)E[A(1A)]EX+E(1A)2=st+21

5、独立重复投掷一颗均匀的骰子,用 Z n Z_n Zn表示前n次中掷出6点的次数
(1)计算 P ( Z 2 = 1 , Z 5 = 3 , Z 7 = 5 ) P(Z_2=1,Z_5=3,Z_7=5) P(Z2=1,Z5=3,Z7=5)
(2)求 P ( Z 18000 > 2900 ) P(Z_{18000}>2900) P(Z18000>2900)的近似值
(3)若掷骰子一直到刚好出现20次6点为止,问需掷多于180次的概率近似为多少.
Solution
(1)
P ( Z 2 = 1 , Z 5 = 3 , Z 7 = 5 ) = P ( Z 7 = 5 ∣ Z 5 = 3 , Z 2 = 1 ) P ( Z 5 = 3 ∣ Z 2 = 1 ) P ( Z 2 = 1 ) = P ( Z 2 = 2 ) P ( Z 3 = 2 ) P ( Z 2 = 1 ) = 25 46656 \begin{align} &P(Z_2=1,Z_5=3,Z_7=5)\notag\\ &=P(Z_7=5 |Z_5=3,Z_2=1)P(Z_5=3 |Z_2=1)P(Z_2=1)\notag\\ &=P(Z_2=2)P(Z_3=2)P(Z_2=1)\notag\\ &=\frac{25}{46656}\notag \end{align} P(Z2=1,Z5=3,Z7=5)=P(Z7=5∣Z5=3,Z2=1)P(Z5=3∣Z2=1)P(Z2=1)=P(Z2=2)P(Z3=2)P(Z2=1)=4665625
(2)
E Z 18000 = 3000 , V a r Z 18000 = 2500 P ( Z 18000 > 2900 ) = P ( Z 18000 − 3000 2500 > 2900 − 3000 2500 ) ≈ 1 − Φ ( − 2 ) ≈ 0.9772 \begin{align} &EZ_{18000}=3000,VarZ_{18000}=2500\notag\\ &P(Z_{18000}>2900)\notag\\ &=P(\frac{Z_{18000}-3000}{\sqrt{2500}}>\frac{2900-3000}{\sqrt{2500}})\notag\\ &\approx1-\Phi(-2)\notag\\ &\approx0.9772\notag \end{align} EZ18000=3000,VarZ18000=2500P(Z18000>2900)=P(2500 Z180003000>2500 29003000)1Φ(2)0.9772
(3)
将问题转化为,投掷180次后点数等于6的次数小于等于19,类似第二题由中心极限定理可得:
P ( Z 180 > 19 ) = P ( Z 180 − 30 25 ≤ 19 − 30 25 ) ≈ Φ ( − 2.2 ) ≈ 0.0139 \begin{align} &P(Z_{180}>19)\notag\\ &=P(\frac{Z_{180}-30}{\sqrt{25}}\leq\frac{19-30}{\sqrt{25}})\notag\\ &\approx\Phi(-2.2)\notag\\ &\approx0.0139\notag \end{align} P(Z180>19)=P(25 Z1803025 1930)Φ(2.2)0.0139

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值