随机过程Hw1

随机过程Hw1
1、在{1,2,3,……,10}中任取一个数记为 X 1 X_1 X1.
在{1,2,3,……, X 1 X_1 X1}中任取一个数记为 X 2 X_2 X2.
在{1,2,3,……, X 2 X_2 X2}中任取一个数记为 X 3 X_3 X3.
试计算:
(1)E( X 2 X_2 X2 | X 1 X_1 X1)和E( X 2 X_2 X2).
(2)E( X 3 X_3 X3 | X 2 X_2 X2)和E( X 3 X_3 X3).
Solution
(1) E( X 2 X_2 X2 | X 1 X_1 X1)= X 1 + 1 2 \frac{X_1+1}{2} 2X1+1
E( X 2 X_2 X2)=E(E( X 2 X_2 X2 | X 1 X_1 X1))= E X 1 + 1 2 \frac{EX_1+1}{2} 2EX1+1= 13 4 \frac{13}{4} 413

(2)E( X 3 X_3 X3 | X 2 X_2 X2)= X 2 + 1 2 \frac{X_2+1}{2} 2X2+1
E( X 3 X_3 X3)=E(E( X 3 X_3 X3 | X 2 X_2 X2))= E X 2 + 1 2 \frac{EX_2+1}{2} 2EX2+1= 17 8 \frac{17}{8} 817

p23 6
假设X~B(N,p), 0 < p < 1 0<p<1 0<p<1是常数,但N是随机变量.
(1)令N~B(M,q), 0 < q < 1 0<q<1 0<q<1, M ≥ 1 M\geq1 M1是常数.求X的分布.
(2)令N~P( λ \lambda λ), λ ≥ 0 \lambda\geq0 λ0是常数,求X的分布.
Solution
P ( x = k ) = ∑ n = k M ( M n ) q n ( 1 − q ) M − n ( n k ) p k ( 1 − p ) n − k = ∑ n = k M M ! ( M − n ) ! n ! n ! ( n − k ) ! k ! p k q n ( 1 − q ) M − n ( 1 − p ) n − k = M ! ( M − k ) ! k ! ( p q ) k ∑ n = k M ( M − k ) ! ( n − k ) ! ( M − n ) ! ( 1 − q ) M − n ( q − p q ) n − k = ( M k ) ( p q ) k ( 1 − p q ) M − k \begin{align} P(x=k)&=\sum_{n=k}^{M}\binom{M}{n}q^n(1-q)^{M-n}\binom{n}{k}p^k(1-p)^{n-k}\notag\\ &=\sum_{n=k}^{M}\frac{M!}{(M-n)!n!}\frac{n!}{(n-k)!k!}p^kq^n(1-q)^{M-n}(1-p)^{n-k}\notag\\ &=\frac{M!}{(M-k)!k!}(pq)^k\sum_{n=k}^{M}\frac{(M-k)!}{(n-k)!(M-n)!}(1-q)^{M-n}(q-pq)^{n-k}\notag\\ &=\binom{M}{k}(pq)^k(1-pq)^{M-k}\notag \end{align} P(x=k)=n=kM(nM)qn(1q)Mn(kn)pk(1p)nk=n=kM(Mn)!n!M!(nk)!k!n!pkqn(1q)Mn(1p)nk=(Mk)!k!M!(pq)kn=kM(nk)!(Mn)!(Mk)!(1q)Mn(qpq)nk=(kM)(pq)k(1pq)Mk
这也就是说X~B(M,pq).

(2)
P ( x = k ) = ∑ n = k ∞ ( n k ) p k ( 1 − p ) n − k λ n n ! e − λ = ∑ n = k ∞ n ! ( n − k ) ! k ! λ n n ! p k ( 1 − p ) n − k e − λ = λ k e − λ p k k ! ∑ n − k = 0 ∞ ( λ − λ p ) n − k ( n − k ) ! = ( p λ ) k k ! e − λ p \begin{align} P(x=k)&=\sum_{n=k}^\infty\binom{n}{k}p^k(1-p)^{n-k}\frac{\lambda^n}{n!}e^{-\lambda}\notag\\ &=\sum_{n=k}^\infty\frac{n!}{(n-k)!k!}\frac{\lambda^n}{n!}p^k(1-p)^{n-k}e^{-\lambda}\notag\\ &=\lambda^ke^{-\lambda}\frac{p^k}{k!}\sum_{n-k=0}^{\infty}\frac{(\lambda-\lambda p)^{n-k}}{(n-k)!}\notag\\ &=\frac{(p\lambda)^k}{k!}e^{-\lambda p}\notag\\ \end{align} P(x=k)=n=k(kn)pk(1p)nkn!λneλ=n=k(nk)!k!n!n!λnpk(1p)nkeλ=λkeλk!pknk=0(nk)!(λλp)nk=k!(pλ)keλp
也就是说X~ P ( p λ ) P(p\lambda) P(pλ)

p24 9
假设X~ P ( λ ) P(\lambda) P(λ),求E(X|X为奇数).
Solution
E ( X ∣ X 为奇数 ) = ∑ k = 0 ∞ ( 2 k + 1 ) P ( X = 2 k + 1 ) P ( X 为奇数 ) = ∑ k = 0 ∞ ( 2 k + 1 ) λ 2 k + 1 ( 2 k + 1 ) ! e − λ ∑ n = 0 ∞ λ 2 n + 1 ( 2 n + 1 ) ! e − λ = λ ∑ k = 0 ∞ λ 2 k ( 2 k ) ! ∑ n = 0 ∞ λ 2 n ( 2 n ) ! = λ e λ + e − λ e λ − e − λ \begin{align} E(X|X为奇数)&=\sum_{k=0}^\infty\frac{(2k+1)P(X=2k+1)}{P(X为奇数)}\notag\\ &=\frac{\sum_{k=0}^\infty(2k+1)\frac{\lambda^{2k+1}}{(2k+1)!}e^{-\lambda}}{\sum_{n=0}^\infty\frac{\lambda^{2n+1}}{(2n+1)!}e^{-\lambda}}\notag\\ &=\lambda\frac{\sum_{k=0}^\infty\frac{\lambda^{2k}}{(2k)!}}{\sum_{n=0}^\infty\frac{\lambda^{2n}}{(2n)!}}\notag\\ &=\lambda\frac{e^\lambda+e^{-\lambda}}{e^\lambda-e^{-\lambda}}\notag \end{align} E(XX为奇数)=k=0P(X为奇数)(2k+1)P(X=2k+1)=n=0(2n+1)!λ2n+1eλk=0(2k+1)(2k+1)!λ2k+1eλ=λn=0(2n)!λ2nk=0(2k)!λ2k=λeλeλeλ+eλ
p26 27
令X是正随机变量,分布函数为F(x).证明:
(1)EX= ∫ 0 ∞ [ 1 − F ( x ) ] d x \int_0^\infty[1-F(x)]dx 0[1F(x)]dx
(2)如果 c > 0 c>0 c>0,那么
E ( X ∧ c ) = ∫ 0 c [ 1 − F ( x ) ] d x , E(X\wedge c)=\int_0^c[1-F(x)]dx, E(Xc)=0c[1F(x)]dx,
其中 X ∧ c X\wedge c Xc表示X和c的最小值;
(3)如果 E X < ∞ EX<\infty EX<,那么
lim ⁡ x → ∞ x P ( X > x ) = 0. \lim_{x\rightarrow\infty}xP(X>x)=0. xlimxP(X>x)=0.
Solution
(1)
E X = E ( ∫ 0 ∞ 1 { x < X } d x ) = ∫ 0 ∞ E 1 { x < X } d x = ∫ 0 ∞ P ( X > x ) d x = ∫ 0 ∞ [ 1 − F ( x ) ] d x \begin{align} EX&=E(\int_0^\infty1_{\{x<X\}}dx)\notag\\ &=\int_0^\infty E1_{\{x<X\}}dx\notag\\ &=\int_0^\infty P(X>x)dx\notag\\ &=\int_0^\infty [1-F(x)]dx\notag \end{align} EX=E(01{x<X}dx)=0E1{x<X}dx=0P(X>x)dx=0[1F(x)]dx
(2)
E ( X ∧ c ) = E ( ∫ 0 ∞ 1 { x < X ∧ c } d x ) = E ( ∫ 0 ∞ 1 { x < X } 1 { x < c } d x ) = E ( ∫ 0 c 1 { x < X } d x ) = ∫ 0 c [ 1 − F ( x ) ] d x \begin{align} E(X\wedge c)&=E(\int_0^\infty1_{\{x<X\wedge c\}}dx)\notag\\ &=E(\int_0^\infty 1_{\{x<X\}} 1_{\{x<c\}}dx)\notag\\ &=E(\int_0^c 1_{\{x<X\}} dx)\notag\\ &=\int_0^c [1-F(x)]dx\notag \end{align} E(Xc)=E(01{x<Xc}dx)=E(01{x<X}1{x<c}dx)=E(0c1{x<X}dx)=0c[1F(x)]dx
(3)由定义
lim ⁡ x → ∞ ∫ x ∞ t d F ( t ) = 0 \lim_{x\rightarrow\infty}\int_x^\infty tdF(t)=0 xlimxtdF(t)=0
所以
x P ( X > x ) ≤ E ( X 1 { X > x } ) xP(X>x)\leq E(X1_{\{X>x\}}) xP(X>x)E(X1{X>x})
附:概率论期末题(运用组合恒等式)
在1-n中不放回地取m个数,求这m个数最大值的期望。
Solution
E = ∑ k = m n k ( k − 1 m − 1 ) ( n m ) = ∑ k = m n k ( k − 1 ) ! ( k − m ) ! ( m − 1 ) ! ( n m ) = m ∑ k = m n k ! ( k − m ) ! m ! ( n m ) = m ∑ k = m n ( k m ) ( n m ) ( 此处运用 ( n m ) + ( n m + 1 ) = ( n + 1 m + 1 ) ) = m ( n + 1 m + 1 ) ( n m ) = m ( n + 1 ) m + 1 \begin{align} E&=\sum_{k=m}^nk\frac{\binom{k-1}{m-1}}{\binom{n}{m}}\notag\\ &=\sum_{k=m}^n\frac{k\frac{(k-1)!}{(k-m)!(m-1)!}}{\binom{n}{m}}\notag\\ &=\frac{m\sum_{k=m}^n\frac{k!}{(k-m)!m!}}{\binom{n}{m}}\notag\\ &=\frac{m\sum_{k=m}^n\binom{k}{m}}{\binom{n}{m}}(此处运用\binom{n}{m}+\binom{n}{m+1}=\binom{n+1}{m+1})\notag\\ &=\frac{m\binom{n+1}{m+1}}{\binom{n}{m}}\notag\\ &=\frac{m(n+1)}{m+1}\notag \end{align} E=k=mnk(mn)(m1k1)=k=mn(mn)k(km)!(m1)!(k1)!=(mn)mk=mn(km)!m!k!=(mn)mk=mn(mk)(此处运用(mn)+(m+1n)=(m+1n+1))=(mn)m(m+1n+1)=m+1m(n+1)

  • 24
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值